Hard Examples for Common Variable Decision Heuristics

Marc Vinyals

Technion Haifa, Israel

Dagstuhl workshop on SAT and Interactions

Introduction	Result	Proof	Experiments
DPLL			

```
Algorithm 1: DPLL
while not solved do
if conflict then backtrack()
else if unit then propagate()
else
decide()
```

State: partial assignment

Introduction	Result	Proof	Experiments
CDCL			

```
Algorithm 2: CDCL
while not solved do
if conflict then learn()
else if unit then propagate()
else
maybe forget()
maybe restart()
decide()
```

State: partial assignment & learned clauses

Introduction	Result		Proof	Experiments
Resolution				
	<u>(</u>	$\frac{C \lor v \qquad D \lor \overline{v}}{C \lor D}$		
$x \lor z$	$y \lor \overline{z}$	$x \lor \overline{y}$	$\overline{x} \lor \overline{y}$	$\overline{x} \lor y$

Introduction	Result		Proof	Experiments
Resolution				
	-	$\frac{C \lor v \qquad D \lor \overline{v}}{C \lor D}$		
$x \lor z$	$y \lor \overline{z}$	$x \lor \overline{y}$	$\overline{x} \lor \overline{y}$	$\overline{x} \lor y$

 $x \lor y$

Introduction	Result		Proof	Experiments
Resolution				
		$\frac{C \lor v \qquad D \lor \overline{v}}{C \lor D}$		
$x \lor z$	$y \lor \overline{z}$	$x \lor \overline{y}$	$\overline{x} \lor \overline{y}$	$\overline{x} \lor y$
		$x \lor y$		

х

Introduction		Result		Proof	Experiments
Resolu	ution				
		<u>C</u>	$\frac{\forall v D \lor \overline{v}}{C \lor D}$		
	$x \lor z$	$y \lor \overline{z}$	$x \lor \overline{y}$	$\overline{x} \lor \overline{y}$	$\overline{x} \lor y$
			$x \lor y$		
			x		
			у		

Introduction	Result		Proof	Expe	riments
Resolution					
	<u>C</u>	$\frac{\forall v D \lor \overline{v}}{C \lor D}$, -		
$x \lor z$	$y \lor \overline{z}$	$x \lor \overline{y}$	$\overline{x} \lor \overline{y}$	$\overline{x} \lor y$	
		$x \lor y$			
		x V			
		\overline{x}			

Intro	oduction	Result		Proof	Exper	iments
R	esolution					
		<u>(</u>	$\frac{C \vee v}{C \vee D}$	v		
	$x \lor z$	$y \lor \overline{z}$	$x \lor \overline{y}$	$\overline{x} \lor \overline{y}$	$\overline{x} \lor y$	
			$x \lor y$			
			x			
			у			
			\overline{x}			
			\perp			

Introduction	Result	Proof	Experiments
CDCL equivale	nt to Resolutior	1	
Observation		[Beame, Kautz	z, Sabharwal '04]
CDCL produces res	olution proofs		

Introduction	Result	Proof	Experiments
CDCL equivalent	to Resolution		
Observation		[Beame, Kautz, S	abharwal '04]
CDCL produces resolut	ion proofs		
Theorem		[Pipatsrisawat,	Darwiche '09]
CDCL can efficiently fi	nd resolution proofs		

Introduction	Result	Proof	Experiments
CDCL equiva	lent to Resolut	ion	
Observation		[Beame, Kautz	, Sabharwal '04]
CDCL produces i	resolution proofs		
Theorem		[Pipatsrisawa	t, Darwiche '09]
CDCL can efficie	ntly find resolution	proofs	
Wait a minute			
Theorem		[Atse	erias, Müller '19]
If a deterministi	c algorithm efficien	tly finds resolution proo	fs then $P = NP$

Introduction	Result	Proof	Experiments
CDCL eq	uivalent to Resolution		
Observati	on	[Beame, Kaut	z, Sabharwal '04]
CDCL prod	uces resolution proofs		
Theorem		[Pipatsrisaw	at, Darwiche '09]
CDCL can e	efficiently find resolution proo	fs	
Wait a min	ute		
Theorem		[Ats	serias, Müller '19]
If a deterministic algorithm efficiently finds resolution proofs then $P = NP$			
	with non-deterministic varial	ole decisions	

Introduction	Result	Proof	Experiments
CDCL equiva	alent to Resolution	on	
Observation		[Beame, Kautz, Sa	abharwal '04]
CDCL produces	resolution proofs		
Theorem		[Pipatsrisawat, [Darwiche '09]
CDCL can effici	ently find resolution p	proofs	
Wait a minute.			
Theorem		[Atseria	is, Müller '19]
If a determinist	ic algorithm efficientl	y finds resolution proofs	then $P = NP$
with	۱ non-deterministic va	ariable decisions	
Also: CDCL wit	h random decisions sir	mulates bounded-width [Atserias, Fichte,	Resolution Thurley '09].

Separation of CDCL vs Resolution

Theorem

There are formulas such that

- Resolution refutations of polynomial length
- Exponential time in CDCL with common variable decision heuristics

Separation of CDCL vs Resolution

Theorem

There are formulas such that

- Resolution refutations of polynomial length
- Exponential time in CDCL with common variable decision heuristics

Variable Decision Heuristics

Which literal do we pick next?

- Will lead to a conflict quickly.
- Was involved in conflicts recently.

Algorithm 2: CDCL while not solved do if conflict then learn() else if unit then propagate() else maybe forget() maybe restart() decide()

Variable Decision Heuristics

Which literal do we pick next?

- Will lead to a conflict quickly.
- Was involved in conflicts recently.

VSIDS

- Give a score q(x) to variable x.
- At each conflict
 - Bump q' = q + 1 if x involved.
 - Decay $q' = 0.95 \cdot q$ all variables.
- Pick variable with largest score

```
Algorithm 2: CDCL
while not solved do
if conflict then learn()
else if unit then propagate()
else
maybe forget()
maybe restart()
decide()
```

Variable Decision Heuristics

Which literal do we pick next?

- Will lead to a conflict quickly.
- Was involved in conflicts recently.

VSIDS

- ► Give a score *q*(*x*) to variable *x*.
- At each conflict
 - Bump q' = q + 1 if x involved.
 - Decay $q' = 0.95 \cdot q$ all variables.
- Pick variable with largest score

Sign

Last assigned.

Algorithm 2: CDCL while not solved do if conflict then learn() else if unit then propagate() else maybe forget() maybe restart() decide()

Properties of VSIDS

- Each conflict
 - Bump q' = q + 1 if x involved.
 - Decay $q' = 0.95 \cdot q$ all variables.

Observation

A variable involved in a conflict is picked before a variable that never has.

Properties of VSIDS

- Each conflict
 - Bump q' = q + 1 if x involved.
 - Decay $q' = 0.95 \cdot q$ all variables.

Observation

A variable involved in a conflict is picked before a variable that never has.

Fine Print

Not true if finite precision. Does hold if stable priority queue.

Separation of CDCL vs Resolution

Definition

A decision heuristic rewards conflicts if a variable involved in a conflict is picked before a variable that never has.

Theorem

There are formulas such that

- Resolution refutations of polynomial length
- Exponential time in CDCL with conflict-rewarding heuristics

troduction	Result	Proof	Experiments
ntuition			
Easy part + Hard pa	rt.		Easy
		Hard	

ntroduction	Result	Proof	Experiments
ntuition			
Easy part + Hard part	t.		
 Conflict in hard part More conflicts in hard 	⇒ d part.		

h

h

Introduction Result	P1001	Experiments
Intuition		
Easy part + Hard part.		
Conflict in hard part ⇒ More conflicts in hard part.		

IIIII Oductioni Result	P1001	Experiments
Intuition		
Easy part + Hard part.		
Conflict in hard part ⇒ More conflicts in hard part.		

Intuition	
Easy part + Hard part.	
► Conflict in hard part ⇒ More conflicts in hard part.	
 But hard formulas are global. Eventually stabilize. Then chance to hit easy formula. 	

	esun	PI00I	Experiments
Intuition			
Easy part + Hard part.			
Conflict in hard part = More conflicts in hard	⇒ oart.		
 But hard formulas are g Eventually stabilize. Then chance to hit easy 	global. / formula.		

- Pitfall gadget produces a conflict involving all hard variables.
- Solver stuck with hard variables!

- Pitfall gadget produces a conflict involving all hard variables.
- Solver stuck with hard variables!

- Pitfall gadget produces a conflict involving all hard variables.
- Solver stuck with hard variables!

- Pitfall gadget produces a conflict involving all hard variables.
- Solver stuck with hard variables!

 But still 1/poly probability of solving easy part first.

Make easy variables lead to pitfall gadget.

Pitfall Formula Φ

Assume have a proof $\pi : \Phi \vdash \bot$ that does not use Γ clauses. In other words have a proof $\pi : (\Phi \setminus \Gamma) \vdash \bot$.

IIIIIoduction	Result	PIOOI	Experiments
Proof Sketch			

- Assume have a proof $\pi : \Phi \vdash \bot$ that does not use Γ clauses. In other words have a proof $\pi : (\Phi \setminus \Gamma) \vdash \bot$.
- Hit π with restriction ρ st $\rho(X) = *$ and ρ satisfies auxiliary gadgets.

Assume have a proof $\pi : \Phi \vdash \bot$ that does not use Γ clauses. In other words have a proof $\pi : (\Phi \setminus \Gamma) \vdash \bot$.

- Hit π with restriction ρ st $\rho(X) = *$ and ρ satisfies auxiliary gadgets.
- ► Have a proof $\pi \upharpoonright_{\rho} : (\Phi \setminus \Gamma) \upharpoonright_{\rho} \vdash \bot$. In other words $\pi \upharpoonright_{\rho} : \mathbf{Ts} \vdash \bot$.

- Assume have a proof $\pi : \Phi \vdash \bot$ that does not use Γ clauses. In other words have a proof $\pi : (\Phi \setminus \Gamma) \vdash \bot$.
- Hit π with restriction ρ st $\rho(X) = *$ and ρ satisfies auxiliary gadgets.
- ► Have a proof $\pi \upharpoonright_{\rho} : (\Phi \setminus \Gamma) \upharpoonright_{\rho} \vdash \bot$. In other words $\pi \upharpoonright_{\rho} : \mathbf{Ts} \vdash \bot$.
- Hence π exponential.

Proof

Proof Sketch (II)

Need to ensure no conflicts use Γ clauses. Define following solver states:

(a)

- No conflict
- No pair of Y variables assigned
- Enough Z variables unassigned

(b)

(a) + a pair of Y variables assigned

(c)

(a) + all X variables involved in a conflict

Experimental Results

Mean CPU time to solve (s)

Formula	CaDiCaL	Glucose	Maple CHB	Maple LRB	Static
Ts(45)	3331	754	621	424	3600
$\Phi(45, 6)$	2228	1917	600	2598	< 1
$\Phi(45, 8)$	1963	2273	607	2650	< 1
$\Phi(45, 10)$	2356	1818	689	2521	< 1
Ts(50)	3600	3600	3600	3600	3600
$\Phi(50, 6)$	3600	3600	3600	3600	< 1
$\Phi(50, 8)$	3600	3600	3600	3600	< 1
$\Phi(50, 10)$	3600	3600	3600	3600	< 1

Eff	ects of R	ando	om D	ecisi	ons						
me (s)	3,500										11 00
	3,000 -				I						
	2,500 -				Ĭ						
	2,000		•								
PU T	1,500 -	•									
0	1,000 -	• •								•	
	500 -			•							
	0	10	20	20	40	F O	(0)	70			→ 100
	0	10	20	30 Ra	40 ndom	50 Freau	60 encv (f	70 %)	80	90	100
								•			

Proof

Result

Introduction

Marc Vinyals (Technion) Hard Examples for Common Variable Decision Heuristics

Experiments

Take Home

Result

CDCL with VSIDS not equivalent to Resolution

Take Home

Result

CDCL with VSIDS not equivalent to Resolution

Open Problems

- CDCL with VSIDS vs CDCL with random decisions?
- Lower bound robust wrt score precision?
- Simpler construction?
- Abstract proof?

Take Home

Result

CDCL with VSIDS not equivalent to Resolution

Open Problems

- CDCL with VSIDS vs CDCL with random decisions?
- Lower bound robust wrt score precision?
- Simpler construction?
- Abstract proof?

Thanks!