Hard Examples for Common Variable Decision Heuristics

Marc Vinyals

Technion Haifa, Israel

Banff workshop on Proof Complexity

DPLL

```
Algorithm 1: DPLL
while not solved do
if conflict then backtrack()
else if unit then propagate()
else
decide()
```

State: partial assignment

CDCL

```
Algorithm 2: CDCL
while not solved do
if conflict then learn()
else if unit then propagate()
else
maybe forget()
maybe restart()
decide()
```

State: partial assignment & learned clauses

Theorem

[Beame, Kautz, Sabharwal '04]

Resolution p-simulates CDCL

Theorem [Beame, Kautz, Sabharwal '04]

Resolution p-simulates CDCL

Theorem [Pipatsrisawat, Darwiche '09]

CDCL p-simulates Resolution

Theorem

[Beame, Kautz, Sabharwal '04]

Resolution p-simulates CDCL

Theorem

[Pipatsrisawat, Darwiche '09]

CDCL p-simulates Resolution

Wait a minute. Albert says Resolution is NP-hard to automatize.

Theorem [Beame, Kautz, Sabharwal '04] Resolution p-simulates CDCL

Theorem [Pipatsrisawat, Darwiche '09]
CDCL p-simulates Resolution

Wait a minute. Albert says Resolution is NP-hard to automatize.

with non-deterministic decisions

Theorem

[Beame, Kautz, Sabharwal '04]

Resolution p-simulates CDCL

Theorem

[Pipatsrisawat, Darwiche '09]

CDCL p-simulates Resolution

Wait a minute. Albert says Resolution is NP-hard to automatize.

with non-deterministic decisions

Also: CDCL with random decisions simulates bounded-width Resolution [Atserias, Fichte, Thurley '09].

Separation of CDCL vs Resolution

Theorem

There are formulas such that

- Resolution refutations of polynomial length
 - Exponential time in CDCL with common decision heuristics

Separation of CDCL vs Resolution

Theorem

There are formulas such that

- Resolution refutations of polynomial length
- Exponential time in CDCL with common decision heuristics

Decision Heuristics

Which literal do we pick next?

- Will lead to a conflict quickly.
- Was involved in conflicts recently.

```
Algorithm 2: CDCL
while not solved do
if conflict then learn()
else if unit then propagate()
else
maybe forget()
maybe restart()
decide()
```

Decision Heuristics

Which literal do we pick next?

- Will lead to a conflict quickly.
- Was involved in conflicts recently.

VSIDS

- Give a score q(x) to variable x.
- At each conflict
 - ▶ Bump q' = q + 1 if x involved.
 - ▶ Decay $q' = 0.95 \cdot q$ all variables.
- Pick variable with largest score

Algorithm 2: CDCL while not solved do if conflict then learn() else if unit then propagate() else maybe forget() maybe restart()

decide()

Decision Heuristics

Which literal do we pick next?

- Will lead to a conflict quickly.
- Was involved in conflicts recently.

VSIDS

- ► Give a score q(x) to variable x.
- At each conflict
 - ▶ Bump q' = q + 1 if x involved.
 - ▶ Decay $q' = 0.95 \cdot q$ all variables.
- Pick variable with largest score

Sign

Last assigned.

```
Algorithm 2: CDCL
while not solved do
if conflict then learn()
else if unit then propagate()
else
maybe forget()
maybe restart()
```

decide()

Properties of VSIDS

- Each conflict
 - ▶ Bump q' = q + 1 if x involved.
 - ▶ Decay $q' = 0.95 \cdot q$ all variables.

Observation

A variable involved in a conflict is picked before a variable that never has.

Properties of VSIDS

- Each conflict
 - ▶ Bump q' = q + 1 if x involved.
 - ▶ Decay $q' = 0.95 \cdot q$ all variables.

Observation

A variable involved in a conflict is picked before a variable that never has.

Fine Print

Not true if finite precision.

Does hold if stable priority queue.

Separation of CDCL vs Resolution

Definition

A decision heuristic rewards conflicts if a variable involved in a conflict is picked before a variable that never has.

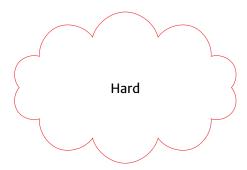
Theorem

There are formulas such that

- Resolution refutations of polynomial length
- Exponential time in CDCL with conflict-rewarding heuristics

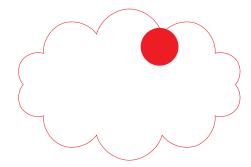
- ▶ Bump q' = q + 1 if x involved.
- ▶ Decay $q' = 0.95 \cdot q$ all variables.

Easy part + Hard part.



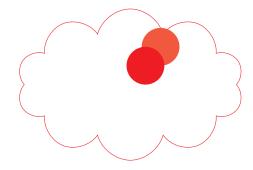
- ▶ Bump q' = q + 1 if x involved.
- ▶ Decay $q' = 0.95 \cdot q$ all variables.

- Easy part + Hard part.
- ► Conflict in hard part ⇒ More conflicts in hard part.



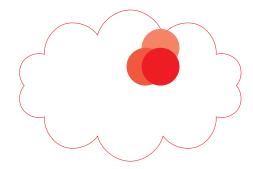
- ▶ Bump q' = q + 1 if x involved.
- ▶ Decay $q' = 0.95 \cdot q$ all variables.

- Easy part + Hard part.
- ► Conflict in hard part ⇒ More conflicts in hard part.



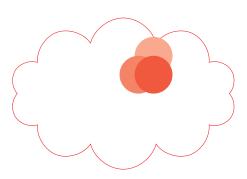
- ▶ Bump q' = q + 1 if x involved.
- ▶ Decay $q' = 0.95 \cdot q$ all variables.

- Easy part + Hard part.
- ► Conflict in hard part ⇒ More conflicts in hard part.



- ▶ Bump q' = q + 1 if x involved.
- ▶ Decay $q' = 0.95 \cdot q$ all variables.

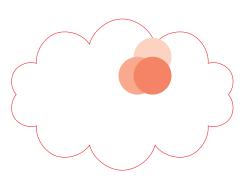
- Easy part + Hard part.
- ► Conflict in hard part ⇒ More conflicts in hard part.
- But hard formulas are global.
- Eventually stabilize.
- Then chance to hit easy formula.



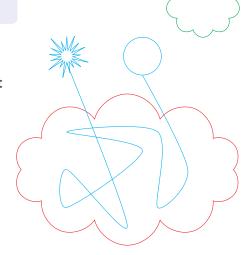
- ▶ Bump q' = q + 1 if x involved.
- ▶ Decay $q' = 0.95 \cdot q$ all variables.

Proof

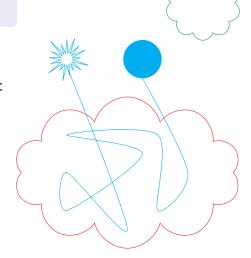
- Easy part + Hard part.
- ► Conflict in hard part ⇒ More conflicts in hard part.
- But hard formulas are global.
- Eventually stabilize.
- Then chance to hit easy formula.



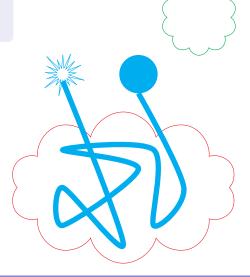
- ▶ Bump q' = q + 1 if x involved.
- ▶ Decay $q' = 0.95 \cdot q$ all variables.



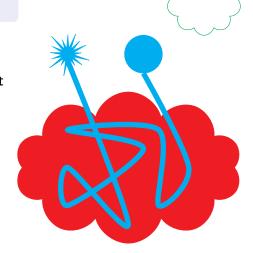
- ▶ Bump q' = q + 1 if x involved.
- ▶ Decay $q' = 0.95 \cdot q$ all variables.



- ▶ Bump q' = q + 1 if x involved.
- ▶ Decay $q' = 0.95 \cdot q$ all variables.

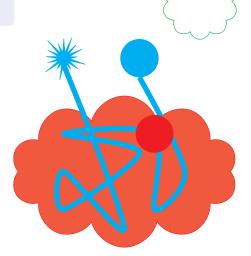


- ▶ Bump q' = q + 1 if x involved.
- ▶ Decay $q' = 0.95 \cdot q$ all variables.



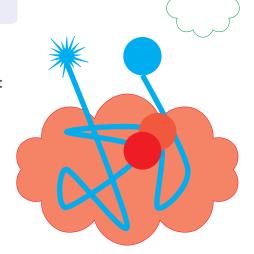
- ▶ Bump q' = q + 1 if x involved.
- Decay $q' = 0.95 \cdot q$ all variables.

- Pitfall gadget produces a conflict involving all hard variables.
- Solver stuck with hard variables!



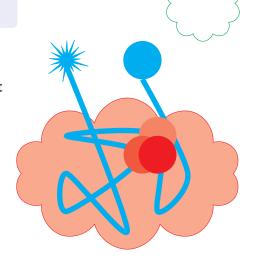
- ▶ Bump q' = q + 1 if x involved.
- ▶ Decay $q' = 0.95 \cdot q$ all variables.

- Pitfall gadget produces a conflict involving all hard variables.
- Solver stuck with hard variables!



- ▶ Bump q' = q + 1 if x involved.
- Decay $q' = 0.95 \cdot q$ all variables.

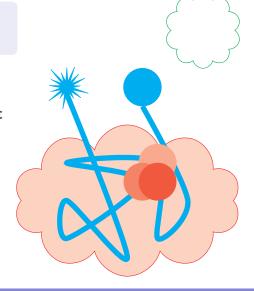
- Pitfall gadget produces a conflict involving all hard variables.
- Solver stuck with hard variables!



- ▶ Bump q' = q + 1 if x involved.
- ▶ Decay $q' = 0.95 \cdot q$ all variables.

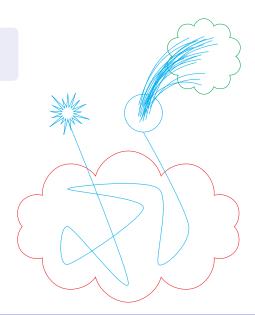
- Pitfall gadget produces a conflict involving all hard variables.
- Solver stuck with hard variables!

But still 1/poly probability of solving easy part first.



- ▶ Bump q' = q + 1 if x involved.
- ▶ Decay $q' = 0.95 \cdot q$ all variables.

Make easy variables lead to pitfall gadget.



Formula Description

Pitfall Formula Φ

Variables

Hard

Easy

Auxiliary

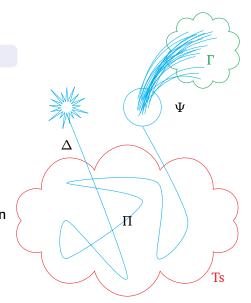
Gadgets

Ts(X, Z)Padded Tseitin $\Gamma(Y)$ Easy

 $\Psi(Y,Z) \& \Pi(Z,X)$ Pitfall

Tail

 $\Delta(Z)$



Assume have a proof $\pi:\Phi\vdash\bot$ that does not use Γ clauses. In other words have a proof $\pi:(\Phi\setminus\Gamma)\vdash\bot$.

- ▶ Assume have a proof π : $\Phi \vdash \bot$ that does not use Γ clauses. In other words have a proof π : $(\Phi \setminus \Gamma) \vdash \bot$.
- ▶ Hit π with restriction ρ st $\rho(X) = *$ and ρ satisfies auxiliary gadgets.

- ▶ Assume have a proof $\pi : \Phi \vdash \bot$ that does not use Γ clauses. In other words have a proof $\pi : (\Phi \setminus \Gamma) \vdash \bot$.
- ▶ Hit π with restriction ρ st $\rho(X) = *$ and ρ satisfies auxiliary gadgets.

► Have a proof $\pi \upharpoonright_{\rho} : (\Phi \setminus \Gamma) \upharpoonright_{\rho} \vdash \bot$. In other words $\pi \upharpoonright_{\rho} : Ts \vdash \bot$.

- ▶ Assume have a proof π : $\Phi \vdash \bot$ that does not use Γ clauses. In other words have a proof π : $(\Phi \setminus \Gamma) \vdash \bot$.
- ▶ Hit π with restriction ρ st $\rho(X) = *$ and ρ satisfies auxiliary gadgets.

- ► Have a proof $\pi \upharpoonright_{\rho} : (\Phi \setminus \Gamma) \upharpoonright_{\rho} \vdash \bot$. In other words $\pi \upharpoonright_{\rho} : Ts \vdash \bot$.
- ► Hence π exponential.

Proof Sketch (II)

Need to ensure no conflicts use Γ clauses. Define following solver states:

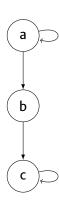
```
(a)
```

- No conflict
- No pair of Y variables assigned
- Enough Z variables unassigned

(b)

(a) + a pair of Y variables assigned

(a) + all X variables involved in a conflict



Take Home

Result

CDCL with VSIDS does not simulate Resolution

Take Home

Result

CDCL with VSIDS does not simulate Resolution

Open Problems

- CDCL with VSIDS vs CDCL with random decisions?
- Lower bound robust wrt score precision?
- Simpler construction?
- Abstract proof?

Take Home

Result

CDCL with VSIDS does not simulate Resolution

Open Problems

- CDCL with VSIDS vs CDCL with random decisions?
- Lower bound robust wrt score precision?
- Simpler construction?
- Abstract proof?

Thanks!