In Between Resolution and Cutting Planes Proof Systems for Pseudo-Boolean SAT Solving

Marc Vinyals

KTH Royal Institute of Technology Stockholm, Sweden

Joint work with Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, and Jakob Nordström

Pragmatics of Constraint Reasoning Workshop August 28 2017, Melbourne, Australia

What do we do

Study pseudo-Boolean solvers from proof complexity point of view

Question

How powerful are pseudo-Boolean solvers?

Build two kinds of formulas

- solvers can perform well with good heuristics
- solvers do not exploit power of pseudo-Boolean constraints

The CDCL Algorithm

```
unit propagate
if conflict :
   learn
   backtrack
else :
   decide variable
```

while not solved :

```
x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z} \quad \overline{x} \lor y \quad \overline{x} \lor \overline{y}
```

Database

The CDCL Algorithm

```
unit propagate
if conflict :
   learn
   backtrack
else :
   decide variable
```

while not solved :

```
x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z} \quad \overline{x} \lor y \quad \overline{x} \lor \overline{y}
Database
```

The CDCL Algorithm

```
while not solved :
   unit propagate
   if conflict :
     learn
     backtrack
   else :
     decide variable
```

```
x \lor y x \lor \overline{y} \lor z x \lor \overline{y} \lor \overline{z} \overline{x} \lor y \overline{x} \lor \overline{y}
```

Database

$$x \stackrel{\mathsf{d}}{=} 0$$

The CDCL Algorithm

```
while not solved :
   unit propagate
   if conflict :
     learn
     backtrack
   else :
     decide variable
```

```
x \lor y x \lor \overline{y} \lor z x \lor \overline{y} \lor \overline{z} \overline{x} \lor y \overline{x} \lor \overline{y}
```

Database

$$x \stackrel{\mathsf{d}}{=} 0 \quad y \stackrel{x \vee y}{=} 1$$

The CDCL Algorithm

```
while not solved :
   unit propagate
   if conflict :
     learn
     backtrack
   else :
     decide variable
```

```
x \lor y x \lor \overline{y} \lor z x \lor \overline{y} \lor \overline{z} \overline{x} \lor y \overline{x} \lor \overline{y}
```

Database

$$x \stackrel{\mathsf{d}}{=} 0 \quad y \stackrel{x \lor y}{=} 1 \quad z \stackrel{x \lor \overline{y} \lor z}{=} 1$$

The CDCL Algorithm

```
while not solved :
   unit propagate
   if conflict :
     learn
     backtrack
   else :
     decide variable
```

```
x \lor y x \lor \overline{y} \lor z x \lor \overline{y} \lor \overline{z} \overline{x} \lor y \overline{x} \lor \overline{y}
```

Database

$$x \stackrel{\mathsf{d}}{=} 0 \quad y \stackrel{x \lor y}{=} 1 \quad z \stackrel{x \lor \overline{y} \lor z}{=} 1$$

The CDCL Algorithm

```
unit propagate
if conflict :
   learn
   backtrack
else :
   decide variable
```

while not solved:

```
x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z} \quad \overline{x} \lor y \quad \overline{x} \lor \overline{y}
```

Database

 χ

$$x \stackrel{d}{=} 0$$
 $y \stackrel{x \lor y}{=} 1$ $z \stackrel{x \lor \overline{y} \lor z}{=} 1$

The CDCL Algorithm

```
while not solved :
   unit propagate
   if conflict :
      learn
      backtrack
   else :
      decide variable
```

```
x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z} \quad \overline{x} \lor y \quad \overline{x} \lor \overline{y}
```

Database

 \boldsymbol{x}

The CDCL Algorithm

```
while not solved :
   unit propagate
   if conflict :
     learn
     backtrack
   else :
     decide variable
```

```
x\vee y \quad x\vee \overline{y}\vee z \quad x\vee \overline{y}\vee \overline{z} \quad \overline{x}\vee y \quad \overline{x}\vee \overline{y}
```

Database

 \boldsymbol{x}

$$x \stackrel{x}{=} 1$$

The CDCL Algorithm

```
while not solved :
   unit propagate
   if conflict :
     learn
     backtrack
   else :
     decide variable
```

```
x\vee y \quad x\vee \overline{y}\vee z \quad x\vee \overline{y}\vee \overline{z} \quad \overline{x}\vee y \quad \overline{x}\vee \overline{y}
```

Database

 \boldsymbol{x}

$$x \stackrel{x}{=} 1$$
 $y \stackrel{\overline{x} \vee y}{=} 1$

The CDCL Algorithm

```
while not solved :
   unit propagate
   if conflict :
     learn
     backtrack
   else :
     decide variable
```

```
x \lor y x \lor \overline{y} \lor z x \lor \overline{y} \lor \overline{z} \overline{x} \lor y \overline{x} \lor \overline{y}
```

Database

 \boldsymbol{x}

$$x \stackrel{x}{=} 1$$
 $y \stackrel{\overline{x} \vee y}{=} 1$

The CDCL Algorithm

```
unit propagate
if conflict:
    learn
    backtrack
else:
    decide variable
```

while not solved:

```
x\vee y \quad x\vee \overline{y}\vee z \quad x\vee \overline{y}\vee \overline{z} \quad \overline{x}\vee y \quad \overline{x}\vee \overline{y}
```

Database

 $x \perp$

$$x \stackrel{x}{=} 1$$
 $y \stackrel{\overline{x} \vee y}{=} 1$

Conflict Analysis

Say there is a conflict with variable z

$$x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z}$$

Assignment ρ

$$x \stackrel{\mathsf{d}}{=} 0 \quad y \stackrel{x \lor y}{=} 1 \quad z \stackrel{x \lor \overline{y} \lor z}{=} 1$$

Conflict Analysis

- Say there is a conflict with variable z
- ▶ Some clause $C \vee \overline{z}$ caused the conflict

$$x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z}$$

Assignment ρ

$$x \stackrel{\mathsf{d}}{=} 0 \quad y \stackrel{x \lor y}{=} 1 \quad z \stackrel{x \lor \overline{y} \lor z}{=} 1$$

Conflict Analysis

- Say there is a conflict with variable z
- ▶ Some clause $C \vee \overline{z}$ caused the conflict
- ▶ Another clause $D \lor z$ propagated z

$$x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z}$$

Assignment ρ

$$x \stackrel{d}{=} 0$$
 $y \stackrel{x \lor y}{=} 1$ $z \stackrel{x \lor \overline{y} \lor z}{=} 1$

Conflict Analysis

- Say there is a conflict with variable z
- ▶ Some clause $C \vee \overline{z}$ caused the conflict
- ▶ Another clause $D \lor z$ propagated z
- Use resolution rule to derive $C \vee D$.

$$x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z}$$

Assignment ρ

$$x \stackrel{\mathsf{d}}{=} 0 \quad y \stackrel{x \vee y}{=} 1 \quad z \stackrel{x \vee \overline{y} \vee z}{=} 1$$

$$\frac{x \vee \overline{y} \vee z \qquad x \vee \overline{y} \vee \overline{z}}{x \vee \overline{y}}$$

Conflict Analysis

- Say there is a conflict with variable z
- ▶ Some clause $C \vee \overline{z}$ caused the conflict
- ▶ Another clause $D \lor z$ propagated z
- ▶ Use resolution rule to derive $C \lor D$.
- Remove z from assignment.

$$x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z}$$

Assignment $\rho \setminus \{z\}$

$$x \stackrel{\mathsf{d}}{=} 0 \quad y \stackrel{x \vee y}{=} 1$$

$$\frac{x \vee \overline{y} \vee z \qquad x \vee \overline{y} \vee \overline{z}}{x \vee \overline{y}}$$

Conflict Analysis

- Say there is a conflict with variable z
- ▶ Some clause $C \vee \overline{z}$ caused the conflict
- ▶ Another clause $D \lor z$ propagated z
- ▶ Use resolution rule to derive $C \lor D$.
- ▶ Remove *z* from assignment.
- ρ falsifies C, ρ falsifies $D \Rightarrow \rho \setminus \{z\}$ falsifies $C \vee D$.

$$x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z}$$

Assignment $\rho \setminus \{z\}$

$$x \stackrel{\mathsf{d}}{=} 0 \quad y \stackrel{x \vee y}{=} 1$$

$$\frac{x \vee \overline{y} \vee z \qquad x \vee \overline{y} \vee \overline{z}}{x \vee \overline{y}}$$

Conflict Analysis

- Say there is a conflict with variable z
- ▶ Some clause $C \vee \overline{z}$ caused the conflict
- ▶ Another clause $D \lor z$ propagated z
- ▶ Use resolution rule to derive $C \lor D$.
- ▶ Remove *z* from assignment.
- ρ falsifies C, ρ falsifies $D \Rightarrow \rho \setminus \{z\}$ falsifies $C \vee D$.
- Repeat until there is no reason for propagation.

$$x \lor y \quad x \lor \overline{y} \lor z \quad x \lor \overline{y} \lor \overline{z}$$

Assignment $\rho \setminus \{z\}$

$$x \stackrel{d}{=} 0$$
 $y \stackrel{x \lor y}{=} 1$

$$\frac{x \vee \overline{y} \vee z \qquad x \vee \overline{y} \vee \overline{z}}{x \vee \overline{y}}$$

The Power of CDCL Solvers

All CDCL proofs are resolution proofs Lower bound for resolution length \Rightarrow lower bound for CDCL run time *(Ignoring preprocessing)

The Power of CDCL Solvers

All CDCL proofs are resolution proofs Lower bound for resolution length \Rightarrow lower bound for CDCL run time *(Ignoring preprocessing)

And the opposite direction?

Theorem [Pipatsrisawat, Darwiche '09; Atserias, Fichte, Thurley '09]

CDCL = Resolution

- CDCL can simulate any resolution proof
- Assumes optimal decision and erasure heuristics

More Powerful Solvers

Resolution is a weak proof system

- e.g. cannot count
- $x_1 + \cdots + x_n = n/2$ needs exponentially many clauses

More Powerful Solvers

Resolution is a weak proof system

- e.g. cannot count
- $x_1 + \cdots + x_n = n/2$ needs exponentially many clauses

Pseudo-Boolean constraints more expressive

$$x_1 + \cdots + x_n \ge n/2$$

 $\overline{x_1} + \cdots + \overline{x_n} \ge n/2$

Build solvers with pseudo-Boolean constraints?

Pseudo-Boolean CDCL

CDCL with pseudo-Boolean constraints is tricky

Pseudo-Boolean CDCL

CDCL with pseudo-Boolean constraints is tricky

 Several variables can propagate in one go

$$2x + y + z \ge 2$$

$$x \stackrel{\mathsf{d}}{=} 0$$

Pseudo-Boolean CDCL

CDCL with pseudo-Boolean constraints is tricky

 Several variables can propagate in one go

$$2x + y + z \ge 2$$

$$x \stackrel{d}{=} 0$$
 $y \stackrel{2x+y+z \ge 2}{=} 1$ $z \stackrel{2x+y+z \ge 2}{=} 1$

Pseudo-Boolean CDCL

CDCL with pseudo-Boolean constraints is tricky

- Several variables can propagate in one go
- Derived constraint not always falsified by assignment

$$x_1 + 2\overline{x_3} + x_4 + 2x_6 \ge 2$$
 $x_2 + x_5 + 2\overline{x_6} \ge 2$

Assignment

$$x_1 \stackrel{d}{=} 0$$
 $x_2 \stackrel{d}{=} 0$ $x_3 \stackrel{d}{=} 1$

Database

Pseudo-Boolean CDCL

CDCL with pseudo-Boolean constraints is tricky

- Several variables can propagate in one go
- Derived constraint not always falsified by assignment

$$x_1 + 2\overline{x_3} + x_4 + 2x_6 \ge 2$$
 $x_2 + x_5 + 2\overline{x_6} \ge 2$

Assignment

$$x_1 \stackrel{d}{=} 0$$
 $x_2 \stackrel{d}{=} 0$ $x_3 \stackrel{d}{=} 1$ $x_6 \stackrel{x_1 + 2\overline{x_3} + x_4 + 2x_6 \ge 2}{=} 1$

Database

Pseudo-Boolean CDCL

CDCL with pseudo-Boolean constraints is tricky

- Several variables can propagate in one go
- Derived constraint not always falsified by assignment

$$x_1 + 2\overline{x_3} + x_4 + 2x_6 \ge 2$$
 $x_2 + x_5 + 2\overline{x_6} \ge 2$

Assignment

$$x_1 \stackrel{d}{=} 0$$
 $x_2 \stackrel{d}{=} 0$ $x_3 \stackrel{d}{=} 1$

Database

$$x_1 + x_2 + 2\overline{x_3} + x_4 + x_5 > 2$$

Pseudo-Boolean CDCL

CDCL with pseudo-Boolean constraints is tricky

- Several variables can propagate in one go
- Derived constraint not always falsified by assignment

Yet all of this can be fixed

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Work with linear pseudo-Boolean inequalities

$$x \lor \overline{y} \quad \to \quad x + \overline{y} \ge 1 \quad \equiv \quad x + (1 - y) \ge 1$$

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Work with linear pseudo-Boolean inequalities

$$x \vee \overline{y} \rightarrow x + \overline{y} \ge 1 \equiv x + (1 - y) \ge 1$$

Rules

Variable axioms

$$x > 0$$
 $-x > -1$

Addition

$$\frac{\sum a_i x_i \ge a \qquad \sum b_i x_i \ge b}{\sum (\alpha a_i + \beta b_i) x_i \ge \alpha a + \beta b} \qquad \frac{\sum a_i x_i \ge a}{\sum (a_i / k) x_i \ge \lceil a / k \rceil}$$

Division

$$\frac{\sum a_i x_i \ge a}{\sum (a_i/k) x_i \ge \lceil a/k \rceil}$$

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Work with linear pseudo-Boolean inequalities

$$x \vee \overline{y} \rightarrow x + \overline{y} \ge 1 \equiv x + (1 - y) \ge 1$$

Rules

Variable axioms

$$\frac{1}{x > 0} - \frac{1}{-x > -1}$$

Addition

$$\frac{\sum a_i x_i \ge a \qquad \sum b_i x_i \ge b}{\sum (\alpha a_i + \beta b_i) x_i \ge \alpha a + \beta b} \qquad \frac{\sum a_i x_i \ge a}{\sum (a_i / k) x_i \ge \lceil a / k \rceil}$$

Division

$$\frac{\sum a_i x_i \ge a}{\sum (a_i/k) x_i \ge \lceil a/k \rceil}$$

Goal: derive 0 > 1

Addition in Practice

Addition

$$\frac{\sum a_i x_i \ge a}{\sum (\alpha a_i + \beta b_i) x_i \ge \alpha a + \beta b}$$

- Unbounded choices
- Need a reason to add inequalities:
 - One conflicting variable
 - Conflict disappears after addition

Addition in Practice

Addition

$$\frac{\sum a_i x_i \ge a}{\sum (\alpha a_i + \beta b_i) x_i \ge \alpha a + \beta b}$$

- Unbounded choices
- Need a reason to add inequalities:
 - One conflicting variable
 - Conflict disappears after addition

Cancelling Addition

Some variable cancels: $\alpha a_i + \beta b_i = 0$

Division in Practice

Division

$$\frac{\sum a_i x_i \ge a}{\sum (a_i/k) x_i \ge \lceil a/k \rceil}$$

► Too expensive

Division in Practice

Division

$$\frac{\sum a_i x_i \ge a}{\sum (a_i/k) x_i \ge \lceil a/k \rceil}$$

Too expensive

Saturation

$$\frac{\sum a_i x_i \ge a}{\sum \min(a, a_i) x_i \ge a}$$

Proof Systems

CP saturation general addition

CP division general addition

Power of subsystems of CP?

CP saturation cancelling addition

CP division cancelling addition

Resolution

Results

Theorem

On CNF inputs all subsystems as weak as resolution

- No subsystem is implicationally complete
- Solver becomes very sensitive to the encoding

Proof Systems

Cancelling addition is a particular case of addition

Resolution

 $A \longrightarrow B$: B simulates A (with only polynomial loss)

Proof Systems

All subsystems simulate resolution

- Trivial over CNF inputs
- Also holds over linear pseudo-Boolean inputs

 $A \longrightarrow B$: B simulates A (with only polynomial loss)

Proof Systems

Repeated divisions simulate saturation

 Polynomial simulation only if polynomial coefficients

 $A \longrightarrow B$: B simulates A (with only polynomial loss)

Proof Systems

CP stronger than resolution

- Pigeonhole principle
- Subset cardinality

have proofs of size

- polynomial in PC
- exponential in resolution

 $A \longrightarrow B$: B simulates A (with only polynomial loss)

 $A - \rightarrow B$: B cannot simulate A (separation)

Proof Systems

Cancellation

≡ Resolution

Over CNF inputs

[Hooker '88]

- Pigeonhole principle
- Subset cardinality

have proofs of size

- polynomial in PC
- exponential in resolution

 $A \longrightarrow B$: B simulates A (with only polynomial loss)

 $A - \rightarrow B$: B cannot simulate A (separation)

Proof Systems

 $A \longrightarrow B$: B simulates A (with only polynomial loss)

 $A \rightarrow B$: B cannot simulate A (separation)

†: known only for polynomial-size coefficients

Cancellation

≡ Resolution

Over CNF inputs

[Hooker '88]

- Pigeonhole principle
- Subset cardinality

have proofs of size

- polynomial in PC
- exponential in CP with cancelling addition and any rounding

Proof Systems

Saturation

≡ Resolution

Over CNF inputs

- Pigeonhole principle
- Subset cardinality

have proofs of size

- polynomial in PC
- exponential in resolution

 $A \longrightarrow B$: B simulates A (with only polynomial loss)

 $A - \rightarrow B$: B cannot simulate A (separation)

Proof Systems

 $A \longrightarrow B$: B simulates A (with only polynomial loss)

 $A \rightarrow B$: B cannot simulate A (separation)

†: known only for polynomial-size coefficients

Saturation ≡ Resolution

Over CNF inputs

- Pigeonhole principle
- Subset cardinality

have proofs of size

- polynomial in PC
- exponential in CP with general addition and saturation

Easy Formulas

Pseudo-Boolean solvers \equiv CP? No

Question

PB solvers \equiv CP with cancelling addition and saturation?

Easy Formulas

Pseudo-Boolean solvers ≡ CP? No

Question

PB solvers

CP with cancelling addition and saturation?

Craft combinatorial formulas easy for CP with cancelling addition and saturation

- All formulas without rational solutions
- Easy versions of NP-hard problems

Proof Systems

 $A \longrightarrow B$: B simulates A (with only polynomial loss)

 $A \rightarrow B$: B cannot simulate A (separation)

Proof Systems

Pseudo-Boolean versions of

- Pigeonhole principle
- Subset cardinality
- **>** ...

have proof of size

- polynomial in all CP subsystems
- exponential in resolution

- $A \longrightarrow B$: B simulates A (with only polynomial loss)
- $A \rightarrow B$: B cannot simulate A (separation)
- †: known only for polynomial-size coefficients

Proof Systems

 $A \longrightarrow B$: B simulates A (with only polynomial loss) $A \dashrightarrow B$: B cannot simulate A (separation)

†: known only for polynomial-size coefficients

Pseudo-Boolean versions of

- Pigeonhole principle
- Subset cardinality
- **>** ...

have proof of size

- polynomial in all CP subsystems
- exponential in resolution

CNF version exponential ⇒
Cannot recover encoding ⇒
Subsystems are incomplete

Proof Systems

Separation candidates
Some formulas have proof of size

- polynomial in CP with cancelling addition and division
- unknown in CP with general addition and saturation

 $A \longrightarrow B$: B simulates A (with only polynomial loss)

 $A \rightarrow B$: B cannot simulate A (separation)

 $A \cdots \triangleright B$: candidate for a separation

Bad News

- On CNF inputs subsystems of CP ≡ resolution
- Subsystems of CP implicationally incomplete

Bad News

- ➤ On CNF inputs subsystems of CP = resolution
- Subsystems of CP implicationally incomplete

Good News

- Many formulas where PB solvers can shine
- Do PB solvers shine in practice?

Bad News

- ➤ On CNF inputs subsystems of CP = resolution
- Subsystems of CP implicationally incomplete

Good News

- Many formulas where PB solvers can shine
- Do PB solvers shine in practice? (Stay tuned...)

Bad News

- ➤ On CNF inputs subsystems of CP = resolution
- Subsystems of CP implicationally incomplete

Good News

- Many formulas where PB solvers can shine
- ► Do PB solvers shine in practice? (Stay tuned...)

Thanks!