In Between Resolution and Cutting Planes Proof Systems for Pseudo-Boolean SAT Solving

Marc Vinyals
KTH Royal Institute of Technology
Stockholm, Sweden

Joint work with Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, and Jakob Nordström

Pragmatics of Constraint Reasoning Workshop
August 28 2017, Melbourne, Australia

What do we do

Study pseudo-Boolean solvers from proof complexity point of view

Question

How powerful are pseudo-Boolean solvers?
Build two kinds of formulas

- solvers can perform well with good heuristics
- solvers do not exploit power of pseudo-Boolean constraints

The CDCL Algorithm

while not solved : unit propagate if conflict :
learn
backtrack
else :
decide variable

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z} \quad \bar{x} \vee y \quad \bar{x} \vee \bar{y}
$$

Database

Assignment

The CDCL Algorithm

while not solved :
unit propagate
if conflict :
learn
backtrack
else :
decide variable

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z} \quad \bar{x} \vee y \quad \bar{x} \vee \bar{y}
$$

Database

Assignment

The CDCL Algorithm

while not solved : unit propagate if conflict :
learn
backtrack
else :
decide variable

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z} \quad \bar{x} \vee y \quad \bar{x} \vee \bar{y}
$$

Database

Assignment

$$
x \stackrel{\mathrm{~d}}{=} 0
$$

The CDCL Algorithm

while not solved :
unit propagate
if conflict :
learn
backtrack
else :
decide variable

$$
\begin{array}{lllll}
x \vee y & x \vee \bar{y} \vee z & x \vee \bar{y} \vee \bar{z} & \bar{x} \vee y & \bar{x} \vee \bar{y}
\end{array}
$$

Database

Assignment

$$
x \stackrel{d}{=} 0 \quad y \stackrel{x \vee y}{=} 1
$$

The CDCL Algorithm

while not solved :
unit propagate
if conflict :
learn
backtrack
else :
decide variable

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z} \quad \bar{x} \vee y \quad \bar{x} \vee \bar{y}
$$

Database

Assignment

$$
x \stackrel{\mathrm{~d}}{=} 0 \quad y \stackrel{x \vee y}{=} 1 \quad z \stackrel{x \vee \bar{y} \vee z}{=} 1
$$

The CDCL Algorithm

while not solved : unit propagate if conflict :
learn
backtrack
else :
decide variable

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z} \quad \bar{x} \vee y \quad \bar{x} \vee \bar{y}
$$

Database

Assignment

$$
x \stackrel{\mathrm{~d}}{=} 0 \quad y \stackrel{x \vee y}{=} 1 \quad z \stackrel{x \vee \bar{y} \vee z}{=} 1
$$

The CDCL Algorithm

while not solved : unit propagate if conflict :
learn
backtrack
else :
decide variable

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z} \quad \bar{x} \vee y \quad \bar{x} \vee \bar{y}
$$

Database

x

Assignment

$$
x \stackrel{\mathrm{~d}}{=} 0 \quad y \stackrel{x \vee y}{=} 1 \quad z \stackrel{x \vee \bar{y} \vee z}{=} 1
$$

The CDCL Algorithm

while not solved : unit propagate if conflict :
learn backtrack else :
decide variable

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z} \quad \bar{x} \vee y \quad \bar{x} \vee \bar{y}
$$

Database

x

Assignment

The CDCL Algorithm

while not solved :
unit propagate
if conflict :
learn
backtrack
else :
decide variable

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z} \quad \bar{x} \vee y \quad \bar{x} \vee \bar{y}
$$

Database

x

Assignment

$x \stackrel{x}{=} 1$

The CDCL Algorithm

while not solved : unit propagate if conflict :
learn
backtrack
else :
decide variable

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z} \quad \bar{x} \vee y \quad \bar{x} \vee \bar{y}
$$

Database

x

Assignment

$$
x \stackrel{x}{=} 1 \quad y \stackrel{\bar{x} \vee y}{=} 1
$$

The CDCL Algorithm

while not solved : unit propagate if conflict :
learn
backtrack
else :
decide variable

$$
\begin{array}{lllll}
x \vee y & x \vee \bar{y} \vee z & x \vee \bar{y} \vee \bar{z} & \bar{x} \vee y & \bar{x} \vee \bar{y}
\end{array}
$$

Database

x

Assignment

$$
x \stackrel{x}{=} 1 \quad y \stackrel{\bar{x} \vee y}{=} 1
$$

The CDCL Algorithm

while not solved : unit propagate if conflict :
learn
backtrack
else :
decide variable

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z} \quad \bar{x} \vee y \quad \bar{x} \vee \bar{y}
$$

Database

$x \quad \perp$

Assignment

$$
x \stackrel{x}{=} 1 \quad y \stackrel{\bar{x} \vee y}{=} 1
$$

Conflict Analysis

- Say there is a conflict with variable z

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z}
$$

Assignment ρ

$$
x \stackrel{\mathrm{~d}}{=} 0 \quad y \stackrel{x \vee y}{=} 1 \quad z \stackrel{x \vee \bar{y} \vee z}{=} 1
$$

Conflict Analysis

- Say there is a conflict with variable z
- Some clause $C \vee \bar{z}$ caused the conflict

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z}
$$

Assignment ρ

$$
x \stackrel{\mathrm{~d}}{=} 0 \quad y \stackrel{x \vee y}{=} 1 \quad z \stackrel{x \vee \bar{y} \vee z}{=} 1
$$

Conflict Analysis

- Say there is a conflict with variable z
- Some clause $C \vee \bar{z}$ caused the conflict
- Another clause $D \vee z$ propagated z

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z}
$$

Assignment ρ

$$
x \stackrel{d}{=} 0 \quad y \stackrel{x \vee y}{=} 1 \quad z \stackrel{x \vee \bar{y} \vee z}{=} 1
$$

Conflict Analysis

- Say there is a conflict with variable z
- Some clause $C \vee \bar{z}$ caused the conflict
- Another clause $D \vee z$ propagated z
- Use resolution rule to derive $C \vee D$.

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z}
$$

Assignment ρ

$$
x \stackrel{d}{=} 0 \quad y \stackrel{x \vee y}{=} 1 \quad z \stackrel{x \vee \bar{y} \vee z}{=} 1
$$

Resolution

$$
\frac{x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z}}{x \vee \bar{y}}
$$

Conflict Analysis

- Say there is a conflict with variable z
- Some clause $C \vee \bar{z}$ caused the conflict
- Another clause $D \vee z$ propagated z
- Use resolution rule to derive $C \vee D$.
- Remove z from assignment.

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z}
$$

Assignment $\rho \backslash\{z\}$

$$
x \stackrel{d}{=} 0 \quad y \stackrel{x \vee y}{=} 1
$$

Resolution

$$
\frac{x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z}}{x \vee \bar{y}}
$$

Conflict Analysis

- Say there is a conflict with variable z
- Some clause $C \vee \bar{z}$ caused the conflict
- Another clause $D \vee z$ propagated z
- Use resolution rule to derive $C \vee D$.
- Remove z from assignment.
- ρ falsifies C, ρ falsifies $D \Rightarrow$ $\rho \backslash\{z\}$ falsifies $C \vee D$.

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z}
$$

Assignment $\rho \backslash\{z\}$

$$
x \stackrel{d}{=} 0 \quad y \stackrel{x \vee y}{=} 1
$$

Resolution

$$
\frac{x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z}}{x \vee \bar{y}}
$$

Conflict Analysis

- Say there is a conflict with variable z
- Some clause $C \vee \bar{z}$ caused the conflict
- Another clause $D \vee z$ propagated z
- Use resolution rule to derive $C \vee D$.
- Remove z from assignment.
- ρ falsifies C, ρ falsifies $D \Rightarrow$ $\rho \backslash\{z\}$ falsifies $C \vee D$.
- Repeat until there is no reason for propagation.

$$
x \vee y \quad x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z}
$$

Assignment $\rho \backslash\{z\}$

$$
x \stackrel{d}{=} 0 \quad y \stackrel{x \vee y}{=} 1
$$

Resolution

$$
\frac{x \vee \bar{y} \vee z \quad x \vee \bar{y} \vee \bar{z}}{x \vee \bar{y}}
$$

The Power of CDCL Solvers

All CDCL proofs are resolution proofs
Lower bound for resolution length \Rightarrow lower bound for CDCL run time
*(Ignoring preprocessing)

The Power of CDCL Solvers

All CDCL proofs are resolution proofs
Lower bound for resolution length \Rightarrow lower bound for CDCL run time
*(Ignoring preprocessing)

And the opposite direction?
Theorem [Pipatsrisawat, Darwiche '09; Atserias, Fichte, Thurley '09]
CDCL \equiv Resolution

- CDCL can simulate any resolution proof
- Assumes optimal decision and erasure heuristics

More Powerful Solvers

Resolution is a weak proof system

- e.g. cannot count
- $x_{1}+\cdots+x_{n}=n / 2$ needs exponentially many clauses

More Powerful Solvers

Resolution is a weak proof system

- e.g. cannot count
- $x_{1}+\cdots+x_{n}=n / 2$ needs exponentially many clauses

Pseudo-Boolean constraints more expressive

$$
\begin{aligned}
& x_{1}+\cdots+x_{n} \geq n / 2 \\
& \overline{x_{1}}+\cdots+\overline{x_{n}} \geq n / 2
\end{aligned}
$$

Build solvers with pseudo-Boolean constraints?

Pseudo-Boolean CDCL

CDCL with pseudo-Boolean constraints is tricky

Pseudo-Boolean CDCL

CDCL with pseudo-Boolean constraints is tricky

- Several variables can propagate in one go

$$
2 x+y+z \geq 2
$$

Assignment

$$
x \stackrel{\mathrm{~d}}{=} 0
$$

Pseudo-Boolean CDCL

CDCL with pseudo-Boolean constraints is tricky

- Several variables can propagate in one go

$$
2 x+y+z \geq 2
$$

Assignment

$$
x \stackrel{d}{=} 0 \quad y \stackrel{2 x+y+z \geq 2}{=} 1 \quad z \stackrel{2 x+y+z \geq 2}{=} 1
$$

Pseudo-Boolean CDCL

CDCL with pseudo-Boolean constraints is tricky

- Several variables can propagate in one go

$$
x_{1}+2 \overline{x_{3}}+x_{4}+2 x_{6} \geq 2 \quad x_{2}+x_{5}+2 \overline{x_{6}} \geq 2
$$

- Derived constraint not always falsified by assignment

Assignment

$$
x_{1} \stackrel{d}{=} 0 \quad x_{2} \stackrel{d}{=} 0 \quad x_{3} \stackrel{d}{=} 1
$$

Database

Pseudo-Boolean CDCL

CDCL with pseudo-Boolean constraints is tricky

- Several variables can propagate in one go

$$
x_{1}+2 \overline{x_{3}}+x_{4}+2 x_{6} \geq 2 \quad x_{2}+x_{5}+2 \overline{x_{6}} \geq 2
$$

- Derived constraint not always falsified by assignment

Assignment

$$
x_{1} \stackrel{d}{=} 0 \quad x_{2} \stackrel{d}{=} 0 \quad x_{3} \stackrel{d}{=} 1 \quad x_{6} \stackrel{x_{1}+2 \overline{x_{3}}+x_{4}+2 x_{6} \geq 2}{=} 1
$$

Database

Pseudo-Boolean CDCL

CDCL with pseudo-Boolean constraints is tricky

- Several variables can propagate in one go

$$
x_{1}+2 \overline{x_{3}}+x_{4}+2 x_{6} \geq 2 \quad x_{2}+x_{5}+2 \overline{x_{6}} \geq 2
$$

- Derived constraint not always falsified by assignment

Assignment

$$
x_{1} \stackrel{d}{=} 0 \quad x_{2} \stackrel{d}{=} 0 \quad x_{3} \stackrel{d}{=} 1
$$

Database

$$
x_{1}+x_{2}+2 \overline{x_{3}}+x_{4}+x_{5} \geq 2
$$

Pseudo-Boolean CDCL

CDCL with pseudo-Boolean constraints is tricky

- Several variables can propagate in one go
- Derived constraint not always falsified by assignment

Yet all of this can be fixed

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Work with linear pseudo-Boolean inequalities $x \vee \bar{y} \quad \rightarrow \quad x+\bar{y} \geq 1 \equiv x+(1-y) \geq 1$

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Work with linear pseudo-Boolean inequalities

$$
x \vee \bar{y} \quad \rightarrow \quad x+\bar{y} \geq 1 \equiv x+(1-y) \geq 1
$$

Rules
Variable axioms
$\overline{x \geq 0} \frac{}{-x \geq-1}$

Addition
$\frac{\sum a_{i} x_{i} \geq a \quad \sum b_{i} x_{i} \geq b}{\sum\left(\alpha a_{i}+\beta b_{i}\right) x_{i} \geq \alpha a+\beta b}$

Division
$\begin{aligned} \sum a_{i} x_{i} & \geq a \\ \sum\left(a_{i} / k\right) x_{i} & \geq\lceil a / k\rceil\end{aligned}$

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Work with linear pseudo-Boolean inequalities

$$
x \vee \bar{y} \quad \rightarrow \quad x+\bar{y} \geq 1 \equiv x+(1-y) \geq 1
$$

Rules
Variable axioms
$\overline{x \geq 0} \overline{-x \geq-1}$

Addition
$\frac{\sum a_{i} x_{i} \geq a \quad \sum b_{i} x_{i} \geq b}{\sum\left(\alpha a_{i}+\beta b_{i}\right) x_{i} \geq \alpha a+\beta b}$

Division
$\begin{aligned} \sum a_{i} x_{i} & \geq a \\ \sum\left(a_{i} / k\right) x_{i} & \geq\lceil a / k\rceil\end{aligned}$

Goal: derive $0 \geq 1$

Addition in Practice

Addition

$$
\frac{\sum a_{i} x_{i} \geq a \quad \sum b_{i} x_{i} \geq b}{\sum\left(\alpha a_{i}+\beta b_{i}\right) x_{i} \geq \alpha a+\beta b}
$$

- Unbounded choices
- Need a reason to add inequalities:
- One conflicting variable
- Conflict disappears after addition

Addition in Practice

Addition
$\frac{\sum a_{i} x_{i} \geq a \quad \sum b_{i} x_{i} \geq b}{\sum\left(\alpha a_{i}+\beta b_{i}\right) x_{i} \geq \alpha a+\beta b}$

- Unbounded choices
- Need a reason to add inequalities:
- One conflicting variable
- Conflict disappears after addition

Cancelling Addition
Some variable cancels: $\alpha a_{i}+\beta b_{i}=0$

Division in Practice

Division

$\sum a_{i} x_{i} \geq a$
$\sum\left(a_{i} / k\right) x_{i} \geq\lceil a / k\rceil$

- Too expensive

Division in Practice

Division

$$
\frac{\sum a_{i} x_{i} \geq a}{\sum\left(a_{i} / k\right) x_{i} \geq\lceil a / k\rceil}
$$

- Too expensive

$$
\begin{aligned}
& \text { Saturation } \\
& \frac{\sum a_{i} x_{i} \geq a}{\sum \min \left(a, a_{i}\right) x_{i} \geq a}
\end{aligned}
$$

Proof Systems

CP saturation general addition

Power of subsystems of CP?

CP division
cancelling addition

CP saturation cancelling addition

CP division general addition

Resolution

Results

Theorem
 On CNF inputs all subsystems as weak as resolution

- No subsystem is implicationally complete
- Solver becomes very sensitive to the encoding

Proof Systems

CP saturation general addition

CP saturation cancelling addition

CP division general addition

CP division
cancelling addition

Cancelling addition is a particular case of addition

Resolution

$A \longrightarrow B: B$ simulates A (with only polynomial loss)

Proof Systems

CP saturation
general addition
\uparrow

CP saturation cancelling addition

CP division

 general addition

CP division cancelling addition

All subsystems simulate resolution

- Trivial over CNF inputs
- Also holds over linear pseudo-Boolean inputs

$$
A \longrightarrow B: B \text { simulates } A \text { (with only polynomial loss) }
$$

Proof Systems

| CP saturation |
| :--- | :--- |
| general addition |$\xrightarrow{\mathrm{t}} \quad$| CP division |
| :--- |
| general addition |

Resolution

Repeated divisions simulate saturation

- Polynomial simulation only if polynomial coefficients
$A \longrightarrow B: B$ simulates A (with only polynomial loss)
\dagger : known only for polynomial-size coefficients

Proof Systems

CP stronger than resolution

- Pigeonhole principle
- Subset cardinality have proofs of size
- polynomial in PC
- exponential in resolution

[^0]
Proof Systems

Resolution
$A \longrightarrow B: B$ simulates A (with only polynomial loss)
$A \rightarrow B: B$ cannot simulate A (separation)
\dagger : known only for polynomial-size coefficients

Cancellation \equiv Resolution

- Over CNF inputs
[Hooker '88]
- Pigeonhole principle
- Subset cardinality
have proofs of size
- polynomial in PC
- exponential in resolution

Proof Systems

CP saturation cancelling addition \longrightarrow cancelling addition

Resolution

Cancellation \equiv Resolution

- Over CNF inputs
[Hooker '88]
- Pigeonhole principle
- Subset cardinality
have proofs of size
- polynomial in PC
- exponential in CP with cancelling addition and any rounding

[^1]
Proof Systems

CP saturation
general addition
$\stackrel{+}{\leftrightarrows}$$\stackrel{C P \text { division }}{\text { general addition }}$

Resolution
$A \longrightarrow B: B$ simulates A (with only polynomial loss)
$A \rightarrow B: B$ cannot simulate A (separation)
\dagger : known only for polynomial-size coefficients

Saturation \equiv Resolution

- Over CNF inputs
- Pigeonhole principle
- Subset cardinality have proofs of size
- polynomial in PC
- exponential in resolution

Proof Systems

| CP saturation | |
| :--- | :--- | :--- |
| general addition | |
| g | |
| $\stackrel{+}{4}$ | CP division
 general addition |

Saturation \equiv Resolution

- Over CNF inputs
- Pigeonhole principle
- Subset cardinality
have proofs of size
- polynomial in PC
- exponential in CP with general addition and saturation
$A \longrightarrow B: B$ simulates A (with only polynomial loss)
$A \rightarrow B: B$ cannot simulate A (separation)
\dagger : known only for polynomial-size coefficients

Easy Formulas

Pseudo-Boolean solvers $\equiv \mathrm{CP}$? No
Question
PB solvers $\equiv \mathrm{CP}$ with cancelling addition and saturation?

Easy Formulas

Pseudo-Boolean solvers $\equiv \mathrm{CP}$? No

Question

PB solvers $\equiv \mathrm{CP}$ with cancelling addition and saturation?

Craft combinatorial formulas easy for CP with cancelling addition and saturation

- All formulas without rational solutions
- Easy versions of NP-hard problems

Proof Systems

$A \longrightarrow B: B$ simulates A (with only polynomial loss)
$A \rightarrow B: B$ cannot simulate A (separation)
\dagger : known only for polynomial-size coefficients

Proof Systems

CP saturation
general addition

[^2]
Proof Systems

CP saturation

general addition | Pseudo-Boolean versions of |
| :--- |
| CP saturation |
| cancelling addition |

Proof Systems

CP saturation cancelling addition $\vec{\dagger}$ cancelling addition

Resolution
Separation candidates
Some formulas have proof of size

- polynomial in CP with cancelling addition and division
- unknown in CP with general addition and saturation
$A \longrightarrow B: B$ simulates A (with only polynomial loss)
$A \rightarrow B: B$ cannot simulate A (separation)
$A \cdots B$: candidate for a separation
†: known only for polynomial-size coefficients

Take Home

Bad News

- On CNF inputs subsystems of CP \equiv resolution
- Subsystems of CP implicationally incomplete

Take Home

Bad News

- On CNF inputs subsystems of CP \equiv resolution
- Subsystems of CP implicationally incomplete

Good News

- Many formulas where PB solvers can shine
- Do PB solvers shine in practice?

Take Home

Bad News

- On CNF inputs subsystems of CP \equiv resolution
- Subsystems of CP implicationally incomplete

Good News

- Many formulas where PB solvers can shine
- Do PB solvers shine in practice? (Stay tuned...)

Take Home

Bad News

- On CNF inputs subsystems of CP \equiv resolution
- Subsystems of CP implicationally incomplete

Good News

- Many formulas where PB solvers can shine
- Do PB solvers shine in practice? (Stay tuned...)

Thanks!

[^0]: $A \longrightarrow B: B$ simulates A (with only polynomial loss)
 $A \rightarrow B: B$ cannot simulate A (separation)
 \dagger : known only for polynomial-size coefficients

[^1]: $A \longrightarrow B: B$ simulates A (with only polynomial loss)
 $A \rightarrow B: B$ cannot simulate A (separation)
 †: known only for polynomial-size coefficients

[^2]: $A \longrightarrow B: B$ simulates A (with only polynomial loss)
 $A \rightarrow B: B$ cannot simulate A (separation)
 \dagger : known only for polynomial-size coefficients

