In Between Resolution and Cutting Planes Proof Systems for Pseudo-Boolean SAT Solving

Marc Vinyals

Tata Institute of Fundamental Research Mumbai, India

Joint work with Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, and Jakob Nordström

Dagstuhl Seminar Proof Complexity February 1 2017, Dagstuhl, Germany

The Power of CDCL Solvers

- Current SAT solvers use CDCL algorithm
- Replace heuristics by nondeterminism \rightarrow CDCL proof system

The Power of CDCL Solvers

- Current SAT solvers use CDCL algorithm
- Replace heuristics by nondeterminism \rightarrow CDCL proof system
- All CDCL proofs are resolution proofs
- Lower bound for resolution length \Rightarrow lower bound for CDCL run time

*(Ignoring preprocessing)

The Power of CDCL Solvers

- Current SAT solvers use CDCL algorithm
- Replace heuristics by nondeterminism \rightarrow CDCL proof system
- All CDCL proofs are resolution proofs
- Lower bound for resolution length \Rightarrow lower bound for CDCL run time

*(Ignoring preprocessing)

And the opposite direction?

Theorem [Pipatsrisawat, Darwiche '09; Atserias, Fichte, Thurley '09] CDCL \equiv_{poly} Resolution

- CDCL can simulate any resolution proof
- Not true for DPLL: limited to tree-like

More Powerful Solvers

Resolution is a weak proof system

- e.g. cannot count
- $x_1 + \cdots + x_n = n/2$ needs exponentially many clauses

More Powerful Solvers

Resolution is a weak proof system

- e.g. cannot count
- $x_1 + \cdots + x_n = n/2$ needs exponentially many clauses

Pseudo-Boolean constraints more expressive

$$x_1 + \dots + x_n \ge n/2$$

$$\overline{x_1} + \dots + \overline{x_n} \ge n/2$$

Build solvers with pseudo-Boolean constraints?

What do we do

Question

How powerful are pseudo-Boolean SAT solvers?

Study proof systems arising from pseudo-Boolean SAT solvers

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Work with linear pseudo-Boolean inequalities $x \lor \overline{y} \to x + \overline{y} \ge 1 \equiv x + (1 - y) \ge 1$ $\overline{y} = 1 - y$ degree

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Work with linear pseudo-Boolean inequalities

$$x \lor \overline{y} \to x + \overline{y} \ge 1 \equiv x + (1 - y) \ge 1$$

 $\overline{y} = 1 - y$ degree

Rules

Variable axiomsAdditionDivision $\frac{1}{x \ge 0}$ $\frac{\sum a_i x_i \ge a}{\sum (\alpha a_i + \beta b_i) x_i \ge \alpha a + \beta b}$ $\frac{\sum a_i x_i \ge a}{\sum (a_i/k) x_i \ge (\alpha a_i/k) x_i \ge \alpha a + \beta b}$

Goal: derive $0 \ge 1$

Addition in Practice

Addition

$$\frac{\sum a_i x_i \ge a}{\sum (\alpha a_i + \beta b_i) x_i \ge \alpha a + \beta b}$$

- Unbounded choices
- Need a reason to add inequalities

Division in Practice

Division

$$\frac{\sum a_i x_i \ge a}{\sum (a_i/k) x_i \ge \lceil a/k \rceil}$$

Too expensive

What is the bare minimum to simulate resolution?

$$\frac{x \lor y \lor \overline{z} \qquad \overline{x} \lor y}{y \lor \overline{z}}$$

What is the bare minimum to simulate resolution?

$$\frac{x \lor y \lor \overline{z} \quad \overline{x} \lor y}{y \lor \overline{z}} \qquad \frac{x + y + \overline{z} \ge 1 \quad \overline{x} + y \ge 1}{x + \overline{x} + 2y + \overline{z} \ge 2}$$

What is the bare minimum to simulate resolution?

$$\frac{x \lor y \lor \overline{z} \qquad \overline{x} \lor y}{y \lor \overline{z}} \qquad \qquad \frac{x + y + \overline{z} \ge 1 \qquad \overline{x} + y \ge 1}{\cancel{x} + 2y + \overline{z} \ge 1}$$

Addition only if some variable cancels

What is the bare minimum to simulate resolution?

$$\frac{x \lor y \lor \overline{z} \qquad \overline{x} \lor y}{y \lor \overline{z}} \qquad \qquad \frac{x + y + \overline{z} \ge 1 \qquad \overline{x} + y \ge 1}{\underbrace{\frac{2y + \overline{z} \ge 1}{y + \overline{z} \ge 1}}$$

- Addition only if some variable cancels
- Division brings coefficients down to degree

Addition in Practice

Addition

$$\frac{\sum a_i x_i \ge a}{\sum (\alpha a_i + \beta b_i) x_i \ge \alpha a + \beta b}$$

- Unbounded choices
- Need a reason to add inequalities

Cancelling Addition

Some variable cancels: $\alpha a_i + \beta b_i = 0$

Division in Practice

Division

$$\frac{\sum a_i x_i \ge a}{\sum (a_i/k) x_i \ge \lceil a/k \rceil}$$

Too expensive

Saturation

 $\frac{\sum a_i x_i \ge a}{\sum \min(a, a_i) x_i \ge a}$

Can simulate with repeated division

CP saturation general addition	CP division general addition
CP saturation	CP division

Power of subsystems of CP?

cancelling addition

cancelling addition

Resolution

Cancelling addition is a particular case of addition

Resolution

 $A \longrightarrow B$: B simulates A (with only polynomial loss)

All subsystems simulate resolution

- Trivial over CNF inputs
- Also holds over linear pseudo-Boolean inputs

 $A \longrightarrow B$: B simulates A (with only polynomial loss)

Repeated divisions simulate saturation

 Polynomial simulation only if polynomial coefficients

 $A \longrightarrow B$: B simulates A (with only polynomial loss)

t: known only for polynomial-size coefficients

CP stronger than resolution

- Pigeonhole principle
- Subset cardinality

have proofs of size

- polynomial in CP
- exponential in resolution

 $A \rightarrow B$: *B* simulates *A* (with only polynomial loss) *A* - \rightarrow *B*: *B* cannot simulate *A* (separation)

t: known only for polynomial-size coefficients

Bad News

Theorem

On CNF inputs all subsystems as weak as resolution

- No subsystem is implicationally complete
- Solvers very sensitive to input encoding

Observation [Hooker '88]

Over CNF inputs CP with cancelling addition \equiv resolution.

Observation [Hooker '88]

Over CNF inputs CP with cancelling addition \equiv resolution.

- Start with clauses (degree 1)
- ► Add two clauses → a clause $\frac{x + \sum y_i \ge 1 \qquad \overline{x} + \sum y_i \ge 1}{\cancel{x} + 1 + \sum y_i \ge 1 + 1}$

Observation [Hooker '88]

Over CNF inputs CP with cancelling addition \equiv resolution.

- Start with clauses (degree 1)
- Add two clauses \rightarrow a clause $\frac{x + \sum y_i \ge 1 \qquad \overline{x} + \sum y_i \ge 1}{\sum y_i \ge 1}$

Observation [Hooker '88]

Over CNF inputs CP with cancelling addition \equiv resolution.

- Start with clauses (degree 1)
- ► Add two clauses → a clause $\frac{x + \sum y_i \ge 1}{\sum y_i \ge 1} = \frac{x \lor C}{C \lor D}$

 $A \rightarrow B$: B simulates A (with only polynomial loss) A - \rightarrow B: B cannot simulate A (separation)

t: known only for polynomial-size coefficients

 $Cancellation \equiv Resolution$

Over CNF inputs

[Hooker '88]

- Pigeonhole principle
- Subset cardinality

have proofs of size

- polynomial in CP
- exponential in CP with cancelling addition and any rounding

Saturation \equiv Resolution

Theorem

Over CNF inputs CP with saturation and polynomial coefficients \equiv resolution.

Saturation \equiv Resolution

Theorem

Over CNF inputs CP with saturation and polynomial coefficients \equiv resolution.

- Represent inequality of degree A with A clauses
 - $x + 2y + \overline{z} \ge 2$ implied by $\{x \lor y, y \lor \overline{z}\}$
- Simulate addition step with A² resolution steps
- Saturation happens automatically

 $A \rightarrow B$: *B* simulates *A* (with only polynomial loss) *A* - \rightarrow *B*: *B* cannot simulate *A* (separation)

t: known only for polynomial-size coefficients

Saturation \equiv Resolution

Over CNF inputs

- Pigeonhole principle
- Subset cardinality

have proofs of size

- polynomial in CP
- exponential in CP with general addition and saturation

Easy Formulas

Pseudo-Boolean solvers \equiv CP? No

Question

PB solvers \equiv CP with cancelling addition and saturation?

Easy Formulas

 $\label{eq:pseudo-Boolean solvers} \mathsf{ECP?}\ \mathsf{No}$

QuestionPB solvers \equiv CP with cancelling addition and saturation?

Craft combinatorial formulas easy for CP with cancelling addition and saturation

- All formulas without rational solutions
- Easy versions of NP-hard problems

 $A \longrightarrow B$: B simulates A (with only polynomial loss) A - \Rightarrow B: B cannot simulate A (separation)

+: known only for polynomial-size coefficients

Pseudo-Boolean versions of

- Pigeonhole principle
- Subset cardinality

have proof of size

. . .

- polynomial in all CP subsystems
- exponential in resolution

- $A \rightarrow B$: B simulates A (with only polynomial loss) A - \rightarrow B: B cannot simulate A (separation)
- +: known only for polynomial-size coefficients

 $A \longrightarrow B$: B simulates A (with only polynomial loss) A - \Rightarrow B: B cannot simulate A (separation)

t: known only for polynomial-size coefficients

Pseudo-Boolean versions of

- Pigeonhole principle
- Subset cardinality

have proof of size

. . .

- polynomial in all CP subsystems
- exponential in resolution

CNF version exponential \Rightarrow Cannot recover encoding \Rightarrow Subsystems are incomplete

Separation candidates Some formulas have proof of size

- polynomial in CP with cancelling addition and division
- unknown in CP with general addition and saturation

- $A \longrightarrow B$: B simulates A (with only polynomial loss)
- $A \rightarrow B$: B cannot simulate A (separation)
- $A \cdots \models B$: candidate for a separation
- t: known only for polynomial-size coefficients

Marc Vinyals (TIFR)

Take Home

Remarks

- Classified subsystems of Cutting Planes
- ► Saturation + Polynomial coefficients ≡ Resolution
- Many formulas where PB solvers can shine

Take Home

Remarks

- Classified subsystems of Cutting Planes
- ► Saturation + Polynomial coefficients ≡ Resolution
- Many formulas where PB solvers can shine

Open problems

- ► Saturation = Resolution?
- Separation on PB inputs

Take Home

Remarks

- Classified subsystems of Cutting Planes
- ► Saturation + Polynomial coefficients ≡ Resolution
- Many formulas where PB solvers can shine

Open problems

- ► Saturation = Resolution?
- Separation on PB inputs

Thanks!