In Between Resolution and Cutting Planes Proof Systems for Pseudo-Boolean SAT Solving

Marc Vinyals
Tata Institute of Fundamental Research Mumbai, India

Joint work with Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, and Jakob Nordström
Dagstuhl Seminar Proof Complexity
February 1 2017, Dagstuhl, Germany

The Power of CDCL Solvers

- Current SAT solvers use CDCL algorithm
- Replace heuristics by nondeterminism \rightarrow CDCL proof system

The Power of CDCL Solvers

- Current SAT solvers use CDCL algorithm
- Replace heuristics by nondeterminism \rightarrow CDCL proof system
- All CDCL proofs are resolution proofs
- Lower bound for resolution length \Rightarrow lower bound for CDCL run time
*(Ignoring preprocessing)

The Power of CDCL Solvers

- Current SAT solvers use CDCL algorithm
- Replace heuristics by nondeterminism \rightarrow CDCL proof system
- All CDCL proofs are resolution proofs
- Lower bound for resolution length \Rightarrow lower bound for CDCL run time
*(Ignoring preprocessing)

And the opposite direction?
Theorem [Pipatsrisawat, Darwiche '09; Atserias, Fichte, Thurley '09]
CDCL $\equiv_{\text {poly }}$ Resolution

- CDCL can simulate any resolution proof
- Not true for DPLL: limited to tree-like

More Powerful Solvers

Resolution is a weak proof system

- e.g. cannot count
- $x_{1}+\cdots+x_{n}=n / 2$ needs exponentially many clauses

More Powerful Solvers

Resolution is a weak proof system

- e.g. cannot count
- $x_{1}+\cdots+x_{n}=n / 2$ needs exponentially many clauses

Pseudo-Boolean constraints more expressive

$$
\begin{aligned}
& x_{1}+\cdots+x_{n} \geq n / 2 \\
& \overline{x_{1}}+\cdots+\overline{x_{n}} \geq n / 2
\end{aligned}
$$

Build solvers with pseudo-Boolean constraints?

What do we do

Question

How powerful are pseudo-Boolean SAT solvers?

Study proof systems arising from pseudo-Boolean SAT solvers

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Work with linear pseudo-Boolean inequalities

$$
\begin{gathered}
x \vee \bar{y} \rightarrow x+\bar{y} \geq 1 \quad \equiv \quad x+(1-y) \geq 1 \\
\bar{y}=1-y \quad \text { degree }
\end{gathered}
$$

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Work with linear pseudo-Boolean inequalities

$$
\begin{gathered}
x \vee \bar{y} \rightarrow x+\bar{y} \geq 1 \quad \equiv \quad x+(1-y) \geq 1 \\
\bar{y}=1-y \quad \text { degree }
\end{gathered}
$$

Rules

Variable axioms
$\overline{x \geq 0} \frac{}{-x \geq-1}$
Addition
$\frac{\sum a_{i} x_{i} \geq a \quad \sum b_{i} x_{i} \geq b}{\sum\left(\alpha a_{i}+\beta b_{i}\right) x_{i} \geq \alpha a+\beta b}$
Division
$\frac{\sum a_{i} x_{i} \geq a}{\sum\left(a_{i} / k\right) x_{i} \geq\lceil a / k\rceil}$

Goal: derive $0 \geq 1$

Addition in Practice

Addition

$$
\frac{\sum a_{i} x_{i} \geq a \quad \sum b_{i} x_{i} \geq b}{\sum\left(\alpha a_{i}+\beta b_{i}\right) x_{i} \geq \alpha a+\beta b}
$$

- Unbounded choices
- Need a reason to add inequalities

Division in Practice

Division

$\frac{\sum a_{i} x_{i} \geq a}{\sum\left(a_{i} / k\right) x_{i} \geq\lceil a / k\rceil}$

- Too expensive

Weaker Rules

What is the bare minimum to simulate resolution?
$\frac{x \vee y \vee \bar{z} \quad \bar{x} \vee y}{y \vee \bar{z}}$

Weaker Rules

What is the bare minimum to simulate resolution?

$$
\frac{x+y+\bar{z} \geq 1 \quad \bar{x}+y \geq 1}{x+\bar{x}+2 y+\bar{z} \geq 2}
$$

Weaker Rules

What is the bare minimum to simulate resolution?

$$
\frac{x+y+\bar{z} \geq 1 \quad \bar{x}+y \geq 1}{\text { 㓉 }+2 y+\bar{z} \geq 1}
$$

- Addition only if some variable cancels

Weaker Rules

What is the bare minimum to simulate resolution?

$$
\frac{x+y+\bar{z} \geq 1 \quad \bar{x}+y \geq 1}{\frac{2 y+\bar{z} \geq 1}{y+\bar{z} \geq 1}}
$$

- Addition only if some variable cancels
- Division brings coefficients down to degree

Addition in Practice

Addition

$$
\begin{aligned}
& \sum a_{i} x_{i} \geq a \quad \sum b_{i} x_{i} \geq b \\
& \sum\left(\alpha a_{i}+\beta b_{i}\right) x_{i} \geq \alpha a+\beta b
\end{aligned}
$$

- Unbounded choices
- Need a reason to add inequalities

Cancelling Addition
Some variable cancels: $\alpha a_{i}+\beta b_{i}=0$

Division in Practice

Division
$\frac{\sum a_{i} x_{i} \geq a}{\sum\left(a_{i} / k\right) x_{i} \geq\lceil a / k\rceil}$

- Too expensive

Saturation
$\frac{\sum a_{i} x_{i} \geq a}{\sum \min \left(a, a_{i}\right) x_{i} \geq a}$

- Can simulate with repeated division

Proof Systems

CP saturation general addition

Power of subsystems of CP?

CP saturation cancelling addition

CP division cancelling addition
 CP division general addition

Resolution

Proof Systems

CP saturation general addition

CP saturation cancelling addition

CP division general addition

CP division
cancelling addition

Cancelling addition is a particular case of addition

Resolution

$A \longrightarrow B: B$ simulates A (with only polynomial loss)

Proof Systems

CP saturation
general addition
\uparrow

CP saturation cancelling addition

CP division

 general addition

CP division

 cancelling additionResolution

All subsystems simulate resolution

- Trivial over CNF inputs
- Also holds over linear pseudo-Boolean inputs

$$
A \longrightarrow B: B \text { simulates } A \text { (with only polynomial loss) }
$$

Proof Systems

CP saturation general addition	CP division general addition	Repeated divisions simulate saturation - Polynomial simulation only if polynomial coefficients
CP saturation cancelling addition	CP division cancelling addition	
	ion	

[^0]†: known only for polynomial-size coefficients

Proof Systems

CP saturation general addition \longrightarrow general addition

CP stronger than resolution

- Pigeonhole principle
- Subset cardinality
have proofs of size
- polynomial in CP
- exponential in resolution
$A \longrightarrow B: B$ simulates A (with only polynomial loss)
$A \rightarrow B: B$ cannot simulate A (separation)
\dagger : known only for polynomial-size coefficients

Bad News

Theorem
 On CNF inputs all subsystems as weak as resolution

- No subsystem is implicationally complete
- Solvers very sensitive to input encoding

Cancelling Addition \equiv Resolution

Observation [Hooker '88]
Over CNF inputs CP with cancelling addition \equiv resolution.

Cancelling Addition \equiv Resolution

Observation [Hooker '88]
Over CNF inputs CP with cancelling addition \equiv resolution.

Proof Sketch

- Start with clauses (degree 1)
- Add two clauses \rightarrow a clause

$$
\frac{x+\sum y_{i} \geq 1 \quad \bar{x}+\sum y_{i} \geq 1}{\text { 安 }+1+\sum y_{i} \geq 1+1}
$$

Cancelling Addition \equiv Resolution

Observation [Hooker '88]

Over CNF inputs CP with cancelling addition \equiv resolution.

Proof Sketch

- Start with clauses (degree 1)
- Add two clauses \rightarrow a clause

$$
\frac{x+\sum y_{i} \geq 1 \quad \bar{x}+\sum y_{i} \geq 1}{\sum y_{i} \geq 1}
$$

Cancelling Addition \equiv Resolution

Observation [Hooker '88]
Over CNF inputs CP with cancelling addition \equiv resolution.

Proof Sketch

- Start with clauses (degree 1)
- Add two clauses \rightarrow a clause

$$
\frac{x+\sum y_{i} \geq 1 \quad \bar{x}+\sum y_{i} \geq 1}{\sum y_{i} \geq 1} \equiv \frac{x \vee C \quad \bar{x} \vee D}{C \vee D}
$$

Proof Systems

CP saturation general addition \longrightarrow general addition

CP saturation cancelling addition

Resolution

Cancellation \equiv Resolution

- Over CNF inputs
[Hooker '88]
- Pigeonhole principle
- Subset cardinality
have proofs of size
- polynomial in CP
- exponential in CP with cancelling addition and any rounding

[^1]
Saturation \equiv Resolution

Theorem

Over CNF inputs CP with saturation and polynomial coefficients \equiv resolution.

Saturation \equiv Resolution

Theorem

Over CNF inputs CP with saturation and polynomial coefficients \equiv resolution.

Proof Sketch

- Represent inequality of degree A with A clauses
- $x+2 y+\bar{z} \geq 2$ implied by $\{x \vee y, y \vee \bar{z}\}$
- Simulate addition step with A^{2} resolution steps
- Saturation happens automatically

Proof Systems

CP saturation

general addition $\stackrel{+}{+}$| CP division |
| :--- |
| general addition |

Saturation \equiv Resolution

- Over CNF inputs
- Pigeonhole principle
- Subset cardinality
have proofs of size
- polynomial in CP
- exponential in CP with general addition and saturation

[^2]
Easy Formulas

Pseudo-Boolean solvers $\equiv \mathrm{CP}$? No
Question
PB solvers $\equiv \mathrm{CP}$ with cancelling addition and saturation?

Easy Formulas

Pseudo-Boolean solvers $\equiv \mathrm{CP}$? No

Question

PB solvers $\equiv \mathrm{CP}$ with cancelling addition and saturation?

Craft combinatorial formulas easy for CP with cancelling addition and saturation

- All formulas without rational solutions
- Easy versions of NP-hard problems

Proof Systems

CP saturation
general addition
CP saturation
cancelling addition
$A \longrightarrow B: B$ simulates A (with only polynomial loss)
$A \rightarrow B: B$ cannot simulate A (separation)
†: known only for polynomial-size coefficients

Proof Systems

CP saturation
general addition

[^3]
Proof Systems

CP saturation
general addition
:---

CP saturation
cancelling addition

Proof Systems

| CP saturation | |
| :--- | :--- | :--- |
| general addition | |
| $\stackrel{+}{\mathrm{t}}$ | CP division |
| general addition | |

CP saturation cancelling addition

Resolution

Separation candidates
Some formulas have proof of size

- polynomial in CP with cancelling addition and division
- unknown in CP with general addition and saturation
$A \longrightarrow B: B$ simulates A (with only polynomial loss)
$A \rightarrow B: B$ cannot simulate A (separation)
$A \cdots B$: candidate for a separation
†: known only for polynomial-size coefficients

Take Home

Remarks

- Classified subsystems of Cutting Planes
- Saturation + Polynomial coefficients \equiv Resolution
- Many formulas where PB solvers can shine

Take Home

Remarks

- Classified subsystems of Cutting Planes
- Saturation + Polynomial coefficients \equiv Resolution
- Many formulas where PB solvers can shine

Open problems

- Saturation \equiv Resolution?
- Separation on PB inputs

Take Home

Remarks

- Classified subsystems of Cutting Planes
- Saturation + Polynomial coefficients \equiv Resolution
- Many formulas where PB solvers can shine

Open problems

- Saturation \equiv Resolution?
- Separation on PB inputs

Thanks!

[^0]: $A \longrightarrow B: B$ simulates A (with only polynomial loss)

[^1]: $A \longrightarrow B: B$ simulates A (with only polynomial loss)
 $A \rightarrow B: B$ cannot simulate A (separation)
 †: known only for polynomial-size coefficients

[^2]: $A \longrightarrow B: B$ simulates A (with only polynomial loss)
 $A \rightarrow B: B$ cannot simulate A (separation)
 \dagger : known only for polynomial-size coefficients

[^3]: $A \longrightarrow B: B$ simulates A (with only polynomial loss)
 $A \rightarrow B: B$ cannot simulate A (separation)
 t: known only for polynomial-size coefficients

