Lifting Applied to Proof Complexity

Marc Vinyals

Technion Haifa, Israel

FSTTCS Workshop on Extension Complexity and Lifting Theorems

Supported by ERC project "HARMONIC"

Is this formula satisfiable?

$x_{11} \lor x_{12}$	$x_{21} \lor x_{22}$	$x_{31} \lor x_{32}$
$\overline{x_{11}} \lor \overline{x_{21}}$	$\overline{x_{11}} \lor \overline{x_{31}}$	$\overline{x_{21}} \lor \overline{x_{31}}$
$\overline{x_{12}} \lor \overline{x_{22}}$	$\overline{x_{12}} \lor \overline{x_{32}}$	

Is this formula satisfiable?

Yes

Is this formula satisfiable?

Yes

$$x_{11} = 1, x_{12} = 0, x_{21} = 0, x_{22} = 1, x_{31} = 0, x_{32} = 1.$$

Is this formula satisfiable?

$x_{11} \lor x_{12}$	$x_{21} \lor x_{22}$	$x_{31} \lor x_{32}$
$\overline{x_{11}} \lor \overline{x_{21}}$	$\overline{x_{11}} \lor \overline{x_{31}}$	$\overline{x_{21}} \lor \overline{x_{31}}$
$\overline{x_{12}} \lor \overline{x_{22}}$	$\overline{x_{12}} \lor \overline{x_{32}}$	$\overline{x_{22}} \lor \overline{x_{32}}$

Is this formula satisfiable?

No

Is this formula satisfiable?

$x_{11} \lor x_{12}$	$x_{21} \lor x_{22}$	$x_{31} \lor x_{32}$
$\overline{x_{11}} \lor \overline{x_{21}}$	$\overline{x_{11}} \lor \overline{x_{31}}$	$\overline{x_{21}} \lor \overline{x_{31}}$
$\overline{x_{12}} \lor \overline{x_{22}}$	$\overline{x_{12}} \lor \overline{x_{32}}$	$\overline{x_{22}} \lor \overline{x_{32}}$

No I promise

Is this formula satisfiable?

$x_{11} \lor x_{12}$	$x_{21} \lor x_{22}$	$x_{31} \lor x_{32}$
$\overline{x_{11}} \lor \overline{x_{21}}$	$\overline{x_{11}} \lor \overline{x_{31}}$	$\overline{x_{21}} \lor \overline{x_{31}}$
$\overline{x_{12}} \lor \overline{x_{22}}$	$\overline{x_{12}} \lor \overline{x_{32}}$	$\overline{x_{22}} \lor \overline{x_{32}}$

No I promise Enumerate all 2⁶ assignments

$x_{11} \lor x_{12}$	$x_{21} \lor x_{22}$	$x_{31} \lor x_{32}$
$\overline{x_{11}} \lor \overline{x_{21}}$	$\overline{x_{11}} \lor \overline{x_{31}}$	$\overline{x_{21}} \lor \overline{x_{31}}$
$\overline{x_{12}} \lor \overline{x_{22}}$	$\overline{x_{12}} \lor \overline{x_{32}}$	$\overline{x_{22}} \lor \overline{x_{32}}$

$x_{11} \lor x_{12}$	$x_{21} \lor x_{22}$	$x_{31} \lor x_{32}$
$\overline{x_{11}} \lor \overline{x_{21}}$	$\overline{x_{11}} \lor \overline{x_{31}}$	$\overline{x_{21}} \lor \overline{x_{31}}$
$\overline{x_{12}} \lor \overline{x_{22}}$	$\overline{x_{12}} \lor \overline{x_{32}}$	$\overline{x_{22}} \lor \overline{x_{32}}$

 $x_{31} \vee \overline{x_{22}}$

Marc Vinyals (Technion) Lifting Applied to Proof Complexity

$x_{11} \lor x_{12}$	$x_{21} \lor x_{22}$	$x_{31} \lor x_{32}$
$\overline{x_{11}} \lor \overline{x_{21}}$	$\overline{x_{11}} \lor \overline{x_{31}}$	$\overline{x_{21}} \vee \overline{x_{31}}$
$\overline{x_{12}} \lor \overline{x_{22}}$	$\overline{x_{12}} \lor \overline{x_{32}}$	$\overline{x_{22}} \lor \overline{x_{32}}$

 $x_{31} \lor \overline{x_{22}}$ $x_{31} \lor x_{21}$

$x_{11} \lor x_{12}$	$x_{21} \lor x_{22}$	$x_{31} \lor x_{32}$
$\overline{x_{11}} \lor \overline{x_{21}}$	$\overline{x_{11}} \lor \overline{x_{31}}$	$\overline{x_{21}} \lor \overline{x_{31}}$
$\overline{x_{12}} \lor \overline{x_{22}}$	$\overline{x_{12}} \lor \overline{x_{32}}$	$\overline{x_{22}} \lor \overline{x_{32}}$
	$x_{31} \lor \overline{x_{22}}$	

 $\frac{x_{31} \lor x_{21}}{\overline{x_{11}} \lor x_{21}}$

$x_{11} \lor x_{12}$	$x_{21} \lor x_{22}$	$x_{31} \lor x_{32}$
$\overline{x_{11}} \lor \overline{x_{21}}$	$\overline{x_{11}} \lor \overline{x_{31}}$	$\overline{x_{21}} \lor \overline{x_{31}}$
$\overline{x_{12}} \lor \overline{x_{22}}$	$\overline{x_{12}} \lor \overline{x_{32}}$	$\overline{x_{22}} \lor \overline{x_{32}}$
	$x_{31} \lor \overline{x_{22}}$	
	$x_{31} \lor x_{21}$	
	$\overline{x_{11}} \lor x_{21}$	
	$\overline{x_{11}}$	

$x_{11} \lor x_{12}$	$x_{21} \lor x_{22}$	$x_{31} \lor x_{32}$
$\overline{x_{11}} \lor \overline{x_{21}}$	$\overline{x_{11}} \lor \overline{x_{31}}$	$\overline{x_{21}} \lor \overline{x_{31}}$
$\overline{x_{12}} \lor \overline{x_{22}}$	$\overline{x_{12}} \lor \overline{x_{32}}$	$\overline{x_{22}} \lor \overline{x_{32}}$
	$x_{31} \lor \overline{x_{22}}$	
	$x_{31} \lor x_{21}$	
	$\overline{x_{11}} \lor x_{21}$	
	$\overline{x_{11}}$	
	x_{11}	

$x_{11} \lor x_{12}$	$x_{21} \lor x_{22}$	$x_{31} \lor x_{32}$
$\overline{x_{11}} \lor \overline{x_{21}}$	$\overline{x_{11}} \lor \overline{x_{31}}$	$\overline{x_{21}} \lor \overline{x_{31}}$
$\overline{x_{12}} \lor \overline{x_{22}}$	$\overline{x_{12}} \lor \overline{x_{32}}$	$\overline{x_{22}} \lor \overline{x_{32}}$
	$x_{31} \lor \overline{x_{22}}$	
	$x_{31} \lor x_{21}$	
	$\overline{x_{11}} \lor x_{21}$	
	$\overline{x_{11}}$	
	<i>x</i> ₁₁	
	\perp	

$$\begin{array}{ll} x_{11} + x_{12} \geq 1 & x_{21} + x_{22} \geq 1 & x_{31} + x_{32} \geq 1 \\ \hline x_{11} + \overline{x_{21}} \geq 1 & \overline{x_{11}} + \overline{x_{31}} \geq 1 & \overline{x_{21}} + \overline{x_{31}} \geq 1 \\ \hline x_{12} + \overline{x_{22}} \geq 1 & \overline{x_{12}} + \overline{x_{32}} \geq 1 & \overline{x_{22}} + \overline{x_{32}} \geq 1 \end{array}$$

$$\begin{array}{cccc} x_{11}+x_{12}\geq 1 & x_{21}+x_{22}\geq 1 & x_{31}+x_{32}\geq 1 \\ 1-x_{11}+1-x_{21}\geq 1 & 1-x_{11}+1-x_{31}\geq 1 & 1-x_{21}+1-x_{31}\geq 1 \\ 1-x_{12}+1-x_{22}\geq 1 & 1-x_{12}+1-x_{32}\geq 1 & 1-x_{22}+1-x_{32}\geq 1 \end{array}$$

$$\begin{array}{ll} x_{11} + x_{12} \geq 1 & x_{21} + x_{22} \geq 1 & x_{31} + x_{32} \geq 1 \\ -x_{11} - x_{21} \geq -1 & -x_{11} - x_{31} \geq -1 & -x_{21} - x_{31} \geq -1 \\ -x_{12} - x_{22} \geq -1 & -x_{12} - x_{32} \geq -1 & -x_{22} - x_{32} \geq -1 \end{array}$$

Examples

- $x_{21} + x_{22} \ge 1 \qquad \qquad x_{31} + x_{32} \ge 1$
- $-x_{11} x_{21} \ge -1$ $-x_{12} x_{22} \ge -1$

 $x_{11} + x_{12} \ge 1$

- $-x_{11} x_{31} \ge -1 \qquad -x_{21} x_{31} \ge -1$
- $-x_{12} x_{32} \ge -1 \qquad -x_{22} x_{32} \ge -1$

Examples

 $-2x_{11}-2x_{21}-2x_{31}\geq -3$

Lifting

 $\begin{array}{ll} x_{11} + x_{12} \geq 1 & x_{21} + x_{22} \geq 1 & x_{31} + x_{32} \geq 1 \\ -x_{11} - x_{21} \geq -1 & -x_{11} - x_{31} \geq -1 & -x_{21} - x_{31} \geq -1 \\ -x_{12} - x_{22} \geq -1 & -x_{12} - x_{32} \geq -1 & -x_{22} - x_{32} \geq -1 \end{array}$

$$-2x_{11} - 2x_{21} - 2x_{31} \ge -3$$
$$-x_{11} - x_{21} - x_{31} \ge -3/2$$

$$\begin{array}{cccc} x_{11} + x_{12} \ge 1 & x_{21} + x_{22} \ge 1 & x_{31} + x_{32} \ge 1 \\ -x_{11} - x_{21} \ge -1 & -x_{11} - x_{31} \ge -1 & -x_{21} - x_{31} \ge -1 \\ -x_{12} - x_{22} \ge -1 & -x_{12} - x_{32} \ge -1 & -x_{22} - x_{32} \ge -1 \end{array}$$

$$-2x_{11} - 2x_{21} - 2x_{31} \ge -3$$
$$-x_{11} - x_{21} - x_{31} \ge -3/2$$
$$-x_{11} - x_{21} - x_{31} \ge -1$$

 $x_{11} + x_{12} \ge 1$

 $-x_{11} - x_{21} \ge -1$

 $-x_{12} - x_{22} \ge -1$

 $x_{21} + x_{22} \ge 1 \qquad x_{31} + x_{32} \ge 1$ $-x_{11} - x_{31} \ge -1 \qquad -x_{21} - x_{31} \ge -1$

 $-x_{12} - x_{32} \ge -1 \qquad -x_{22} - x_{32} \ge -1$

 $-2x_{11} - 2x_{21} - 2x_{31} \ge -3$ $-x_{11} - x_{21} - x_{31} \ge -3/2$ $-x_{11} - x_{21} - x_{31} \ge -1$ $-x_{12} - x_{22} - x_{32} \ge -1$

-

$$\begin{array}{cccc} x_{11} + x_{12} \ge 1 & x_{21} + x_{22} \ge 1 & x_{31} + x_{32} \ge 1 \\ -x_{11} - x_{21} \ge -1 & -x_{11} - x_{31} \ge -1 & -x_{21} - x_{31} \ge -1 \\ -x_{12} - x_{22} \ge -1 & -x_{12} - x_{32} \ge -1 & -x_{22} - x_{32} \ge -1 \end{array}$$

$$-2x_{11} - 2x_{21} - 2x_{31} \ge -3$$
$$-x_{11} - x_{21} - x_{31} \ge -3/2$$
$$-x_{11} - x_{21} - x_{31} \ge -1$$
$$-x_{12} - x_{22} - x_{32} \ge -1$$
$$-x_{11} - x_{21} - x_{31} - x_{12} - x_{22} - x_{32} \ge -2$$

 $x_{11} + x_{12} \ge 1$ $x_{21} + x_{22} \ge 1$ $x_{31} + x_{32} \ge 1$ $-x_{11} - x_{21} \ge -1$ $-x_{11} - x_{31} \ge -1$ $-x_{21} - x_{31} \ge -1$ $-x_{12} - x_{22} \ge -1$ $-x_{12} - x_{32} \ge -1$ $-x_{22} - x_{32} \ge -1$

$$\begin{array}{c} -2x_{11} - 2x_{21} - 2x_{31} \ge -3 \\ & -x_{11} - x_{21} - x_{31} \ge -3/2 \\ & -x_{11} - x_{21} - x_{31} \ge -1 \\ & -x_{12} - x_{22} - x_{32} \ge -1 \\ & -x_{11} - x_{21} - x_{31} - x_{12} - x_{22} - x_{32} \ge -2 \\ & x_{11} + x_{21} + x_{31} + x_{12} + x_{22} + x_{32} \ge 3 \end{array}$$

-

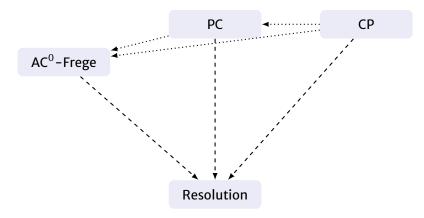
$$\begin{array}{cccc} x_{11} + x_{12} \ge 1 & x_{21} + x_{22} \ge 1 & x_{31} + x_{32} \ge 1 \\ -x_{11} - x_{21} \ge -1 & -x_{11} - x_{31} \ge -1 & -x_{21} - x_{31} \ge -1 \\ -x_{12} - x_{22} \ge -1 & -x_{12} - x_{32} \ge -1 & -x_{22} - x_{32} \ge -1 \end{array}$$

$$-2x_{11} - 2x_{21} - 2x_{31} \ge -3$$
$$-x_{11} - x_{21} - x_{31} \ge -3/2$$
$$-x_{11} - x_{21} - x_{31} \ge -1$$
$$-x_{12} - x_{22} - x_{32} \ge -1$$
$$-x_{11} - x_{21} - x_{31} - x_{12} - x_{22} - x_{32} \ge -2$$
$$x_{11} + x_{21} + x_{31} + x_{12} + x_{22} + x_{32} \ge 3$$
$$0 \ge 1$$

A Few Proof Systems

Resolution Lines are clauses Polynomial Calculus Lines are polynomials Cutting Planes Lines are linear inequalities Bounded Depth Frege Lines are AC⁰ circuits

Family Picture



 $A \longrightarrow B$: A simulates B (with only polynomial loss) $A \dots \Rightarrow B$: B cannot simulate A (separation) $A - \Rightarrow B$: simulation+separation

*A***⊲**··►*B*: incomparable

Marc Vinyals (Technion) Lifting Applied to Proof Complexity

Lifting

- Proving lower bounds is hard.
- Let us prove easier lower bounds.

Lifting

- Proving lower bounds is hard.
- Let us prove easier lower bounds.

Plan

- 1 Prove formula *F* hard in weak model/measure.
- **2** Lift to $F \circ g$.
- 3 Prove generic lifting theorem.
- Lifted problem hard in strong model/measure.

Lifting

- Proving lower bounds is hard.
- Let us prove easier lower bounds.

Plan

- 1 Prove formula *F* hard in weak model/measure.
- **2** Lift to $F \circ g$.
- 3 Prove generic lifting theorem.
- Lifted problem hard in strong model/measure.

Many results in proof complexity follow this pattern.

Lifting

- Proving lower bounds is hard.
- Let us prove easier lower bounds.

Plan

- 1 Prove formula *F* hard in weak model/measure.
- **2** Lift to $F \circ g$.
- 3 Prove generic lifting theorem.
- Lifted problem hard in communication complexity.
- **5** Lifted problem has no short proofs.
- Many results in proof complexity follow this pattern.
- This talk: communication complexity techniques.

Lifting in Proof Complexity

- Have formula *F* with variables x_1, \ldots, x_n .
- Replace variable x_i with gadget $g(x_i^1, \ldots, x_i^k)$.

Lifting in Proof Complexity

- Have formula *F* with variables x_1, \ldots, x_n .
- Replace variable x_i with gadget $g(x_i^1, \ldots, x_i^k)$.

Example

 $F = \{x \lor y, \ \overline{x} \lor y, \ \overline{y}\}$

$$F \circ \oplus = \{ x^1 \oplus x^2 \lor y^1 \oplus y^2, \ \overline{x^1 \oplus x^2} \lor y^1 \oplus y^2, \ \overline{y^1 \oplus y^2} \}$$

Lifting in Proof Complexity

- Have formula F with variables x_1, \ldots, x_n .
- Replace variable x_i with gadget $g(x_i^1, \ldots, x_i^k)$.

Example

$$F = \{x \lor y, \ \overline{x} \lor y, \ \overline{y}\}$$

$$F \circ \oplus = \{x^1 \oplus x^2 \lor y^1 \oplus y^2, \overline{x^1 \oplus x^2} \lor y^1 \oplus y^2, \overline{y^1 \oplus y^2}\}$$
$$= x^1 \lor x^2 \lor y^1 \lor y^2, x^1 \lor x^2 \lor \overline{y^1} \lor \overline{y^2},$$
$$\overline{x^1} \lor \overline{x^2} \lor y^1 \lor y^2, \overline{x^1} \lor \overline{x^2} \lor \overline{y^1} \lor \overline{y^2},$$
$$\dots$$
$$y_1 \lor \overline{y_2}, \overline{y_1} \lor y_2$$

Falsified Clause Search Problem

Given CNF formula *F* Input Assignment to variables $\alpha : x \mapsto \{0, 1\}^n$ Output Clause $C \in F$ falsified by assignment α

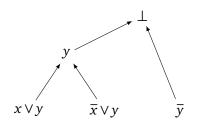
Falsified Clause Search Problem

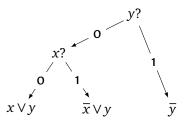
Given CNF formula *F* Input Assignment to variables $\alpha : x \mapsto \{0, 1\}^n$ Output Clause $C \in F$ falsified by assignment α

Example

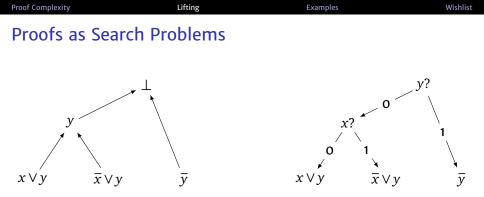
```
Given F = \{x \lor y, \ \overline{x} \lor y, \ \overline{y}\}
Input x = 0, \ y = 1
Output \overline{y}
```

Proofs as Search Problems





• Small proof \implies small decision tree.



- Small proof \implies small decision tree.
- But proofs cannot be balanced, we only get depth lower bounds.
- Use communication complexity.

Examples

Marc Vinyals (Technion) Lifting Applied to Proof Complexity

Resolution vs Cutting Planes

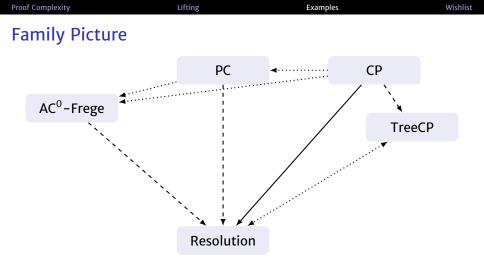
[Bonet, Esteban, Galesi, Johannsen '98]

Theorem

There exists a formula family F_n such that

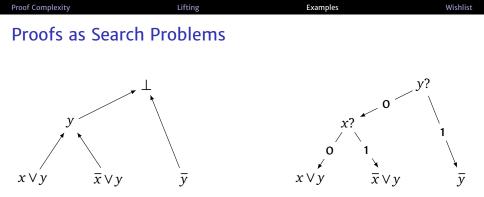
F_n has resolution proofs of length poly(n)

But every tree-like CP proof must have length $exp(\Omega(n))$

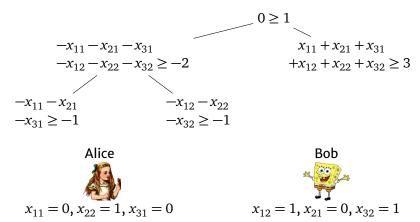


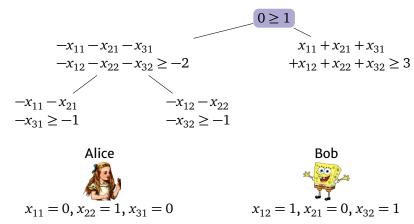
 $A \longrightarrow B$: A simulates B (with only polynomial loss) $A \dashrightarrow B$: B cannot simulate A (separation) $A - \rightarrow B$: simulation+separation

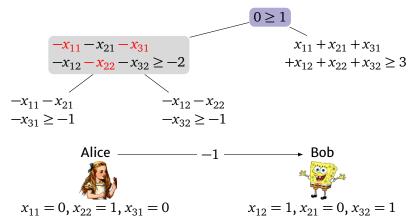
*A***≺** → *B*: incomparable

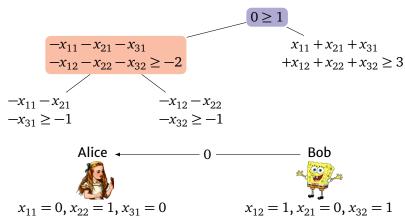


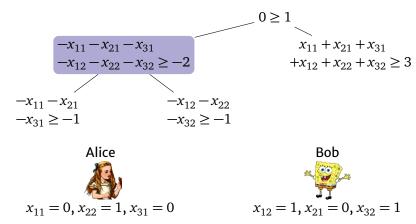
- Small proof \implies small decision tree.
- But proofs cannot be balanced, we only get depth lower bounds.
- Use communication complexity.

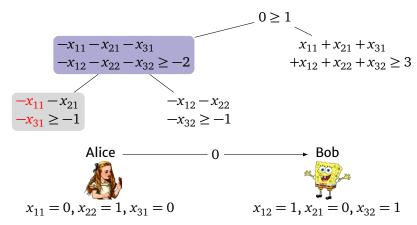


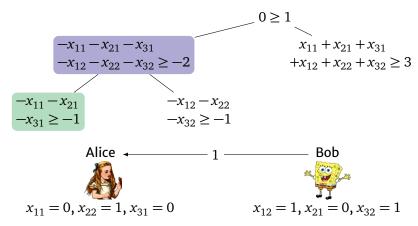


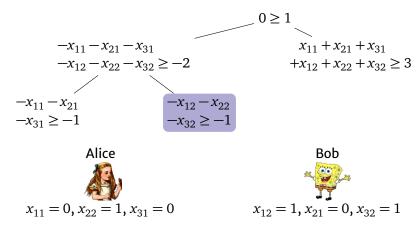


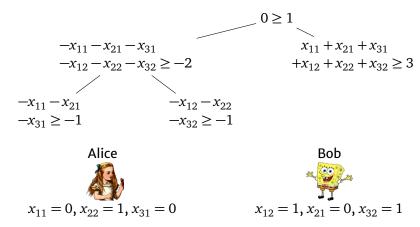












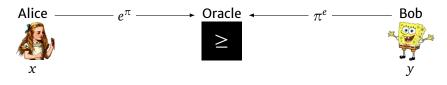
- Alice sends sum of her variables; Bob evaluates inequality.
- Ok if small coefficients, in general solve GT.

- ► Want a lifting theorem for a model of communication where GT is easy.
- e.g. Randomized
- or Deterministic with a GT oracle.

- Want a lifting theorem for a model of communication where GT is easy.
- e.g. Randomized
- or Deterministic with a GT oracle.

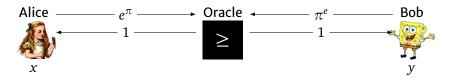
- Send f(x), g(y) to oracle
- Both parties see answer
- Cost number of calls

- Want a lifting theorem for a model of communication where GT is easy.
- e.g. Randomized
- or Deterministic with a GT oracle.



- Send f(x), g(y) to oracle
- Both parties see answer
- Cost number of calls

- Want a lifting theorem for a model of communication where GT is easy.
- e.g. Randomized
- or Deterministic with a GT oracle.



- ► Send *f*(*x*), *g*(*y*) to oracle
- Both parties see answer
- Cost number of calls

Lifting With a GT Oracle

Theorem

 $\mathsf{P}_{\rm cc}^{\mathsf{GT}}(f \circ \text{IND}) = \Omega(\mathsf{P}_{\rm dt}(f) \cdot \log n)$

Theorem

```
\mathsf{P}_{\rm cc}^{\mathsf{GT}}(f \circ \mathrm{IND}) = \Omega(\mathsf{P}_{\rm dt}(f) \cdot \log n)
```

Proof

Essentially like Arkadev's talk.

Proof Complexity	Lifting	Examples	Wishlist
Lifting With a	GT Oracle		
Theorem			

```
\mathsf{P}_{cc}^{\mathsf{GT}}(f \circ \mathrm{IND}) = \Omega(\mathsf{P}_{\mathrm{dt}}(f) \cdot \log n)
```

Proof

- Essentially like Arkadev's talk. Recall:
- One bit of communication partitions inputs into two rectangles.
- At least one is large.

Proof Complexity	Lifting	Examples	Wishlist
Lifting With a (JI Uracle		

Theorem

```
\mathsf{P}_{\rm cc}^{\mathsf{GT}}(f \circ \mathrm{IND}) = \Omega(\mathsf{P}_{\rm dt}(f) \cdot \log n)
```

Proof

- Essentially like Arkadev's talk. Recall:
- One bit of communication partitions inputs into two rectangles.
- At least one is large.
- Now partition inputs into two triangles.
- At least one contains a large rectangle.

Polynomial Calculus vs Cutting Planes

[Garg, Göös, Kamath, Sokolov '18; Göös, Kamath, Robere, Sokolov '19]

Theorem

There exists a formula family F_n such that

- *F_n* has polynomial calculus proof of length poly(n)
- But every CP proof must have length $\exp(\Omega(n))$

Polynomial Calculus vs Cutting Planes

[Garg, Göös, Kamath, Sokolov '18; Göös, Kamath, Robere, Sokolov '19]

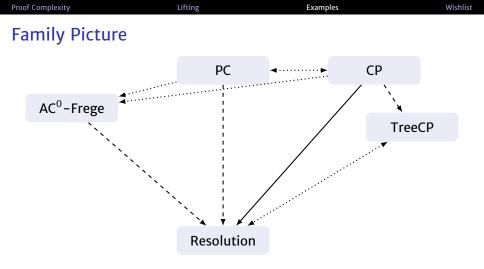
Theorem

There exists a formula family F_n such that

F_n has polynomial calculus proof of length poly(n)

But every CP proof must have length exp(Ω(n))

- Uses "DAG-like" lifting
- More after tea!



 $A \longrightarrow B$: A simulates B (with only polynomial loss) $A \dots \Rightarrow B$: B cannot simulate A (separation) $A - - \Rightarrow B$: simulation+separation

*A***→***···B*: incomparable

Coefficients in Cutting Planes

Every Boolean function that can be represented with a linear inequality has a representation with coefficients of size O(n!).

[Muroga, Toda, Takasu '61]

And this is tight.

[Håstad '94]

Coefficients in Cutting Planes

Every Boolean function that can be represented with a linear inequality has a representation with coefficients of size O(n!).

[Muroga, Toda, Takasu '61]

And this is tight.

[Håstad '94]

Every formula that has a CP proof of length L has a proof of similar length and coefficients of size O(2^L).

[Buss, Clote '96]

Is this needed?

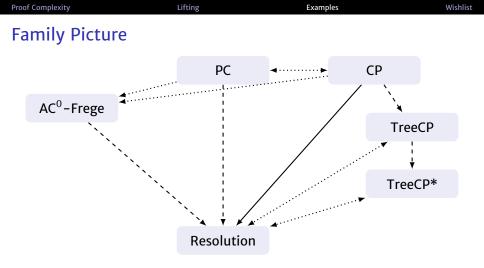
Coefficients in Cutting Planes

[de Rezende, Meir, Nordström, Pitassi, Robere, V]

Theorem

There exists a formula family F_n such that

- F_n has tree-like CP proofs of length L = poly(n)
- F_n has tree-like CP proofs with coefficient size c = O(1)
- But every tree-like CP proof must have $\log L \cdot c = \Omega(n)$



 $A \longrightarrow B$: A simulates B (with only polynomial loss) $A \dots \Rightarrow B$: B cannot simulate A (separation) $A - - \Rightarrow B$: simulation+separation

 $A \blacktriangleleft B$: incomparable

How to encode $x_1 = y_1, \ldots, x_n = y_n$?

How to encode
$$x_1 = y_1, \ldots, x_n = y_n$$
?

▶ 2*n* inequalities

$$x_1 \ge y_1$$
$$y_1 \ge x_1$$
$$\dots$$
$$x_n \ge y_n$$
$$y_n \ge x_n$$

How to encode
$$x_1 = y_1, \ldots, x_n = y_n$$
?

▶ 2*n* inequalities

$$x_1 \ge y_1$$
$$y_1 \ge x_1$$
$$\dots$$
$$x_n \ge y_n$$
$$y_n \ge x_n$$

How to encode
$$x_1 = y_1, \ldots, x_n = y_n$$
?

▶ 2*n* inequalities

$$x_1 \ge y_1$$
$$y_1 \ge x_1$$
$$\dots$$
$$x_n \ge y_n$$
$$y_n \ge x_n$$

► 1 equality
$$x_1 + 2x_2 + \dots + 2^{n-1}x_n = y_1 + 2y_2 + \dots + 2^{n-1}y_n$$

How to encode
$$x_1 = y_1, \ldots, x_n = y_n$$
?

► 2*n* inequalities

$$x_1 \ge y_1$$
$$y_1 \ge x_1$$
$$\dots$$
$$x_n \ge y_n$$
$$y_n \ge x_n$$

2 inequalities

$$x_1 + 2x_2 + \dots + 2^{n-1}x_n \ge y_1 + 2y_2 + \dots + 2^{n-1}y_n$$

$$y_1 + 2y_2 + \dots + 2^{n-1}y_n \ge x_1 + 2x_2 + \dots + 2^{n-1}x_n$$

Lifting with Equality Gadget

Theorem

 $P_{cc}(\text{Search}(F \circ g)) \ge \deg_{Nss}(F)$ for all gadgets g such that $\operatorname{rank}(g) \ge n/\deg_{Nss}(F)$.

Nullstellensatz degree $deg_{Nss}(F)$:

- Interpret F as polynomials $\{f_i\}$.
- Pick polynomials g_i such that

$$\sum_{i} f_i g_i = 1$$

with minimal $\max_i \deg(f_i g_i)$.

DAG-like lifting for intersections of triangles?

Wishlist

DAG-like lifting for intersections of triangles?

Multi-party lifting?

Wishlist

DAG-like lifting for intersections of triangles?

Multi-party lifting?

Simulation version of lifting with equality gadget?

Wishlist

DAG-like lifting for intersections of triangles?

Multi-party lifting?

Simulation version of lifting with equality gadget?

- Round-aware lifting with equality?
- DAG-like lifting with equality?

Take Home

- Have a new lifting theorem?
- Chances are it implies something for proof complexity!

Take Home

- Have a new lifting theorem?
- Chances are it implies something for proof complexity!

Thanks!

Technical Detail

- ▶ Proof for $F \circ g \implies$ protocol for Search $(F \circ g)$.
- ▶ But lower bound for $Search(F) \circ g$.

Technical Detail

- ▶ Proof for $F \circ g \implies$ protocol for Search $(F \circ g)$.
- ▶ But lower bound for $Search(F) \circ g$.

- ► Not a problem: protocol for Search(F ∘ g) ⇒ protocol for Search(F) ∘ g.
 - On input (x,y) obtain clause D falsified by (x,y).
 - ▶ $D \in CNF(C \circ g)$ with $C \in F$.
 - Answer C falsified by z = g(x, y).