Equality Alone Does not Simulate Randomness

Marc Vinyals

Tata Institute of Fundamental Research
Mumbai, India

Joint work with Arkadev Chattopadhyay and Shachar Lovett
34th Computational Complexity Conference

Deterministic Communication

- Equality needs $n+1$ bits.

Randomized Communication

x, r

Bob

$\operatorname{Pr}_{r}[$ error $]<1 / 3$
y, r

Randomized Communication

Randomized Communication

- Can solve equality with $O(\log n)$ bits.

Randomized Communication

- Can solve equality with $O(1)$ bits.

Randomized Communication

- Can solve equality with $\mathrm{O}(1)$ bits.
- Greater-than
- $x \geq y$?
- O(log n) bits.

Randomized Communication

- Can solve equality with $\mathrm{O}(1)$ bits.
- Greater-than
- $x \geq y$?
- O(log n) bits.
- Small-set disjointness
- $x \cap y=\emptyset$?, promise $|x|,|y| \leq k$
- $\mathrm{O}(k)$ bits.

Randomized Communication

- Can solve equality with $\mathrm{O}(1)$ bits.
- Greater-than
- $x \geq y$?
- O(log n) bits.
- Small-set disjointness
- $x \cap y=\emptyset$?, promise $|x|,|y| \leq k$
- $\mathrm{O}(k)$ bits.
- Hashing / Equality is enough to efficiently solve all of these.

Communication with EQ Oracle

[Babai, Frankl, Simon '86]

Oracle

y, y

- Send $f(x), g(y)$ to oracle
- Both parties see answer
- Cost number of calls

Communication with EQ Oracle

[Babai, Frankl, Simon '86]

- Send $f(x), g(y)$ to oracle
- Both parties see answer
- Cost number of calls

Communication with EQ Oracle

[Babai, Frankl, Simon '86]

- Send $f(x), g(y)$ to oracle
- Both parties see answer
- Cost number of calls

Communication with EQ Oracle

[Babai, Frankl, Simon '86]

- Send $f(x), g(y)$ to oracle
- Both parties see answer
- Cost number of calls

BPP vs P^{EQ}

Question

For every function, is P^{EQ} cost $\simeq \mathrm{BPP}$ cost?

Question

For every function, is P^{EQ} cost $\simeq \mathrm{BPP}$ cost?

- Known false for partial functions
- e.g. $\operatorname{Maj}(x \oplus y)$, promise $x \oplus y$ has either $2 n / 3$ os or $2 n / 31$ s.
- 2-bit BPP protocol
- Sample $i \in[n]$
- Send x_{i}
- Answer $x_{i} \oplus y_{i}$
- P^{EQ} cost $\Omega(n)$ [Papakonstantinou, Scheder, Song '14].

BPP vs P^{EQ}

Question

For every total function, is P^{EQ} cost $\simeq \mathrm{BPP}$ cost?

- Known false for partial functions
- e.g. $\operatorname{Maj}(x \oplus y)$, promise $x \oplus y$ has either $2 n / 3$ os or $2 n / 31$ s.

BPP vs $P^{E Q}$

Question

For every total function, is P^{EQ} cost $\simeq \mathrm{BPP}$ cost?

- Known false for partial functions
- e.g. $\operatorname{Maj}(x \oplus y)$, promise $x \oplus y$ has either $2 n / 3$ os or $2 n / 31$ s.

Our result: No.

Theorem

There is a total function with $\mathrm{BPP} \operatorname{cost} \mathrm{O}(\log n)$ and $\mathrm{P}^{\mathrm{EQ}} \operatorname{cost} \Omega(n)$.

Integer Inner Product

Parameters t small constant, n growing, $N=2^{n / t-1}$
Input t integers in $[-N, N]$
Alice $x=x_{1}, \ldots, x_{t}$
Bob $y=y_{1}, \ldots, y_{t}$
Output $\operatorname{IIP}(x, y)=\llbracket\langle x, y\rangle=0 \rrbracket= \begin{cases}1 & \text { if } x_{1} y_{1}+\cdots+x_{t} y_{t}=0 \\ 0 & \text { otherwise }\end{cases}$

Upper Bound

t small constant, n growing, $N=2^{n / t-1}$
$\operatorname{IIP}(x, y)=\llbracket x_{1} y_{1}+\cdots+x_{t} y_{t}=0 \rrbracket$

Protocol

- Sample p among first $\Theta(n)$ primes
- Send $x_{1}(\bmod p), \ldots, x_{t}(\bmod p)$
- Answer $\langle x, y\rangle \equiv 0(\bmod p)$

Cost $t \log p=\mathrm{O}(\log n)$
Correct with probability 3/4

Lower Bound

Oracle

Bob

y

- Prove for P^{GT}.
- Can simulate EQ with 2 calls to GT.

Lower Bound

Oracle

x

Bob

y

- Prove for P^{GT}.
- Can simulate EQ with 2 calls to GT.
- Cannot use BPP techniques.

Rectangle Partitions

Rectangle Partitions

- Each bit splits inputs into 2 rectangles.
- After c bits have 2^{c} rectangles.

Rectangle Partitions

- Each bit splits inputs into 2 rectangles.
- After c bits have 2^{c} rectangles.

Rectangle Partitions

- Each bit splits inputs into 2 rectangles.
- After c bits have 2^{c} rectangles.

Rectangle Partitions

Triangle Partitions

- Each call splits inputs into 2 triangles.

Triangle Partitions

- Each call splits inputs into 2 triangles.

Triangle Partitions

- Each call splits inputs into 2 triangles.
- After c calls have 2^{c} ??
- Intersections of triangles not triangles.
- Each call may use different order.

Rectangle Partitions of Triangle Partitions

- Refine partition for free.

Rectangle Partitions of Triangle Partitions

- Refine partition for free.

Rectangle Partitions of Triangle Partitions

- Refine partition for free.
- Each call splits inputs into 2^{n} rectangles.
- After c calls have $2^{c n}$ rectangles.
- Useless?!

Rectangle Partitions of Triangle Partitions

- Refine partition for free.
- Each call splits inputs into 2^{n} rectangles.
- After c calls have $2^{c n}$ rectangles.
- Useless?!
- Many of these rectangles are large. Can we exploit this?

Perimeter

Total perimeter

$$
\sum_{A \times B \in \mathcal{R}}|A|+|B|
$$

Perimeter

Total perimeter

$$
\sum_{A \times B \in \mathcal{R}}|A|+|B|
$$

Perimeter

Total perimeter

$$
\sum_{A \times B \in \mathcal{R}}|A|+|B|
$$

Perimeter

Total perimeter

Perimeter

Total perimeter $\quad \sum_{A \times B \in \mathcal{R}}|A|+|B|$

Greater-than

$2^{n} \cdot n$

Inner product over \mathbb{F}_{2}

η-Area

Total η-area

$\sum_{A \times B \in \mathcal{R}}(|A||B|)^{\eta}$

$$
1 / 2<\eta<1
$$

Proof Sketch

Theorem

The P^{GT} cost of IIP_{6} is $\Omega(n)$.

Proof Sketch

Theorem

The P^{GT} cost of IIP_{6} is $\Omega(n / \log n)$.

Proof Sketch

Theorem

The P^{GT} cost of IIP_{6} is $\Omega(n / \log n)$.
Claim Each call increases perimeter by factor n. After c calls total perimeter $2^{n} \cdot n^{c}$.

Proof Sketch

Theorem

The P^{GT} cost of IIP_{6} is $\Omega(n / \log n)$.
Claim Each call increases perimeter by factor n. After c calls total perimeter $2^{n} \cdot n^{c}$.

Lemma

IIP_{6} has perimeter $2^{n} \cdot \exp (\Omega(n))$.

Proof Sketch

Theorem

The P^{GT} cost of IIP_{6} is $\Omega(n / \log n)$.
Claim Each call increases perimeter by factor n. After c calls total perimeter $2^{n} \cdot n^{c}$.

Lemma

IIP_{6} has perimeter $2^{n} \cdot \exp (\Omega(n))$.
Claim A function with 1-mass α and 1-rectangles of size at most β has perimeter $\alpha / \sqrt{\beta}$.

Proof Sketch

Theorem

The P^{GT} cost of IIP_{6} is $\Omega(n / \log n)$.
Claim Each call increases perimeter by factor n. After c calls total perimeter $2^{n} \cdot n^{c}$.

Lemma

IIP $_{6}$ has perimeter $2^{n} \cdot \exp (\Omega(n))$.
Claim A function with 1-mass α and 1-rectangles of size at most β has perimeter $\alpha / \sqrt{\beta}$.
Claim IIP_{6} has 1 -mass at least $\geq 2^{2 n} / N^{2}$.
Claim IIP $_{6}$ has all 1-rectangles of size at most N^{6}.

Hierarchy

- What if we had an IIP oracle?

Hierarchy

- What if we had an IIP oracle?

Theorem

For each t exists t^{\prime} such that $\mathrm{P}^{\| \mathrm{IP}_{\mathrm{t}}}$ cost of $\mathrm{IIP}_{t^{\prime}}$ is $\Omega(n)$

Take Home

Remarks

- $\mathrm{P}^{\mathrm{EQ}} \neq \mathrm{BPP}$ even for total functions
- Hierarchy $\mathrm{P}^{\mathrm{EQ}} \varsubsetneqq \mathrm{P}^{\| \mathrm{I}_{\mathrm{t}_{1}}} \ddagger \mathrm{P}^{\| \mathrm{IP}_{\mathrm{t}_{2}}} \ddagger \cdots \varsubsetneqq \mathrm{BPP}$

Take Home

Remarks

- $\mathrm{P}^{\mathrm{EQ}} \neq \mathrm{BPP}$ even for total functions
- Hierarchy $\mathrm{P}^{\mathrm{EQ}} \nsubseteq \mathrm{P}^{I I \mathrm{P}_{\mathrm{t}_{1}}} \nsubseteq \mathrm{P}^{\| \mathrm{IP}_{\mathrm{t}_{2}}} \ddagger \cdots \varsubsetneqq \mathrm{BPP}$

Open problems

- Is $B P P \subset P^{N P}$? (for total functions)
- In particular do BPP functions always have large rectangles?

Take Home

Remarks

- $\mathrm{P}^{\mathrm{EQ}} \neq \mathrm{BPP}$ even for total functions
- Hierarchy $\mathrm{P}^{\mathrm{EQ}} \nsubseteq \mathrm{P}^{I I \mathrm{P}_{\mathrm{t}_{1}}} \nsubseteq \mathrm{P}^{\| \mathrm{IP}_{\mathrm{t}_{2}}} \ddagger \cdots \varsubsetneqq \mathrm{BPP}$

Open problems

- Is $B P P \subset P^{N P}$? (for total functions)
- In particular do BPP functions always have large rectangles?

Thanks!

