Equality Alone Does not Simulate Randomness

Marc Vinyals

Tata Institute of Fundamental Research Mumbai, India

Joint work with Arkadev Chattopadhyay and Shachar Lovett

34th Computational Complexity Conference

Deterministic Communication

P

Alice

x

6 | x + y?

Bob

1/

P

Alice $\longrightarrow x \pmod{2} \longrightarrow Bob$

х

$$6 | x + y?$$

Deterministic Communication

Deterministic Communication

P

Alice

x

x = y?

Bob

1/

▶ Equality needs n+1 bits.

BPP

Alice

x, r

 $Pr_r[error] < 1/3$

y,*r*

BPP

x,r

x = y?

y, r

Can solve equality with $O(\log n)$ bits.

BPP

Alice

x, r

Bob

y, r

BPP

Alice

x, r

Can solve equality with O(1) bits.

Bob

y,r

BPP

Alice

x, r

- Can solve equality with O(1) bits.
- ► Greater-than
 - $\rightarrow x \ge y$?
 - $ightharpoonup O(\log n)$ bits.

Bob

y,r

BPP

Alice

x, r

- ► Can solve equality with O(1) bits.
- ► Greater-than
 - $\rightarrow x \ge y$?
 - $ightharpoonup O(\log n)$ bits.
- Small-set disjointness
 - $x \cap y = \emptyset$?, promise $|x|, |y| \le k$
 - ► O(*k*) bits.

Bob

y, r

BPP

Alice

x, r

Bob

y,r

- ► Can solve equality with O(1) bits.
- ▶ Greater-than
 - $\rightarrow x \ge y$?
 - $ightharpoonup O(\log n)$ bits.
- Small-set disjointness
 - $x \cap y = \emptyset$?, promise $|x|, |y| \le k$
 - ightharpoonup O(k) bits.
- ► Hashing / Equality is enough to efficiently solve all of these.

PEQ

[Babai, Frankl, Simon '86]

Alice

x, y

- ightharpoonup Send f(x), g(y) to oracle
- Both parties see answer
- Cost number of calls

Oracle

Bob

y, y'

 \mathbf{p}^{EQ}

[Babai, Frankl, Simon '86]

Alice
$$\sum 1/n^2$$
 Oracle $\pi^2/6$ Bob

 x, y

- ightharpoonup Send f(x), g(y) to oracle
- Both parties see answer
- Cost number of calls

PEC

[Babai, Frankl, Simon '86]

- ightharpoonup Send f(x), g(y) to oracle
- Both parties see answer
- Cost number of calls

PEQ

[Babai, Frankl, Simon '86]

- ightharpoonup Send f(x), g(y) to oracle
- Both parties see answer
- Cost number of calls

BPP vs P^{EQ}

Question

For every function, is P^{EQ} cost \simeq BPP cost?

BPP vs P^{EQ}

Question

For every function, is P^{EQ} cost \simeq BPP cost?

- Known false for partial functions
- ▶ e.g. Maj($x \oplus y$), promise $x \oplus y$ has either 2n/3 os or 2n/3 1s.
- 2-bit BPP protocol
 - ▶ Sample $i \in [n]$
 - \triangleright Send x_i
 - Answer $x_i \oplus y_i$
- ▶ P^{EQ} cost $\Omega(n)$ [Papakonstantinou, Scheder, Song '14].

BPP vs PEQ

Question

For every total function, is P^{EQ} cost \simeq BPP cost?

- Known false for partial functions
- e.g. Maj $(x \oplus y)$, promise $x \oplus y$ has either 2n/3 os or 2n/3 1s.

BPP vs PEQ

Question

For every total function, is P^{EQ} cost \simeq BPP cost?

- Known false for partial functions
- e.g. Maj $(x \oplus y)$, promise $x \oplus y$ has either 2n/3 os or 2n/3 1s.

Our result: No.

Theorem

There is a total function with BPP cost $O(\log n)$ and P^{EQ} cost $\Omega(n)$.

Integer Inner Product

```
Parameters t small constant, n growing, N=2^{n/t-1} Input t integers in [-N,N] Alice x=x_1,\ldots,x_t Bob y=y_1,\ldots,y_t Output \mathrm{IIP}(x,y)=[\![\langle x,y\rangle=0]\!]=\begin{cases} 1 & \text{if } x_1y_1+\cdots+x_ty_t=0\\ 0 & \text{otherwise} \end{cases}
```

Upper Bound

```
t small constant, n growing, N = 2^{n/t-1}

IIP(x,y) = [x_1y_1 + \cdots + x_ty_t = 0]
```

Protocol

- ► Sample p among first $\Theta(n)$ primes
- ightharpoonup Send $x_1 \pmod{p}, \dots, x_t \pmod{p}$
- ► Answer $\langle x, y \rangle \equiv 0 \pmod{p}$

 $Cost \ t \log p = O(\log n)$

Correct with probability 3/4

Lower Bound

 P^{GT}

Alice

Oracle

Bob

/

- Prove for P^{GT}.
- ► Can simulate EQ with 2 calls to GT.

Lower Bound

 P^{GT}

Alice

Oracle

Bob

V

- Prove for P^{GT}.
- Can simulate EQ with 2 calls to GT.

Cannot use BPP techniques.

Alice

11

- ► Each bit splits inputs into 2 rectangles.
- ightharpoonup After c bits have 2^c rectangles.

- Each bit splits inputs into 2 rectangles.
- ightharpoonup After c bits have 2^c rectangles.

- ► Each bit splits inputs into 2 rectangles.
- ightharpoonup After c bits have 2^c rectangles.

- Each bit splits inputs into 2 rectangles.
- ightharpoonup After c bits have 2^c rectangles.

Alice

- ► Each bit splits inputs into 2 rectangles.
- ightharpoonup After c bits have 2^c rectangles.
- ightharpoonup Can show EQ requires 2^n rectangles.

Triangle Partitions

► Each call splits inputs into 2 triangles.

Triangle Partitions

► Each call splits inputs into 2 triangles.

Triangle Partitions

Alice
$$f(x)$$
 Oracle $g(y)$ Bob $f(x) \ge g(y)$ $f(x) \ge g(y)$ $g(y)$ $g(y)$

- Each call splits inputs into 2 triangles.
- After c calls have 2^c ??
- Intersections of triangles not triangles.
- Each call may use different order.

Rectangle Partitions of Triangle Partitions

Refine partition for free.

Rectangle Partitions of Triangle Partitions

Refine partition for free.

Rectangle Partitions of Triangle Partitions

- Refine partition for free.
- Each call splits inputs into 2ⁿ rectangles.
- ightharpoonup After c calls have 2^{cn} rectangles.
- Useless?!

Rectangle Partitions of Triangle Partitions

- Refine partition for free.
- Each call splits inputs into 2ⁿ rectangles.
- ightharpoonup After c calls have 2^{cn} rectangles.
- Useless?!
- Many of these rectangles are large. Can we exploit this?

$$\sum_{A\times B\in\mathcal{R}}|A|+|B|$$

Total perimeter

$$\sum_{A \times B \in \mathcal{R}} |A| + |B|$$

$$2^n \cdot 2 \cdot 1/2$$

Total perimeter

$$\sum_{A \times B \in \mathcal{R}} |A| + |B|$$

$$2^n \cdot (2 \cdot 1/2 + 4 \cdot 1/4)$$

$$\sum_{A \times B \in \mathcal{R}} |A| + |B|$$

$$2^{n}(2 \cdot 1/2 + 4 \cdot 1/4 + \dots + 2^{n} \cdot 2^{-n}) = 2^{n} \cdot n$$

Total perimeter

$$\sum_{A \times B \in \mathcal{R}} |A| + |B|$$

Greater-than

 $2^n \cdot n$

Inner product over \mathbb{F}_2

$$(2^n-1)\cdot(2^{n-1}+1)\simeq 2^{2n-1}$$

$$\eta$$
-Area

Total
$$\eta$$
-area

$$\sum_{A\times B\in\mathcal{R}} (|A||B|)^{\eta}$$

$$1/2 < \eta < 1$$

$$2^{2\eta n}(1\cdot (1/4)^{\eta} + 2\cdot (1/16)^{\eta} + \dots + 2^{n-1}\cdot 2^{-2\eta n}) = 2^{2\eta n}\cdot q$$

Theorem

The P^{GT} cost of IIP_6 is $\Omega(n)$.

Theorem

The P^{GT} cost of IIP_6 is $\Omega(n/\log n)$.

Theorem

The P^{GT} cost of IIP_6 is $\Omega(n/\log n)$.

Claim Each call increases perimeter by factor n. After c calls total perimeter $2^n \cdot n^c$.

Theorem

The P^{GT} cost of IIP_6 is $\Omega(n/\log n)$.

Claim Each call increases perimeter by factor n. After c calls total perimeter $2^n \cdot n^c$.

Lemma

IIP₆ has perimeter $2^n \cdot \exp(\Omega(n))$.

Theorem

The P^{GT} cost of IIP_6 is $\Omega(n/\log n)$.

Claim Each call increases perimeter by factor n. After c calls total perimeter $2^n \cdot n^c$.

Lemma

 IIP_6 has perimeter $2^n \cdot \exp(\Omega(n))$.

Claim A function with 1-mass α and 1-rectangles of size at most β has perimeter $\alpha/\sqrt{\beta}$.

Theorem

The P^{GT} cost of IIP_6 is $\Omega(n/\log n)$.

Claim Each call increases perimeter by factor n. After c calls total perimeter $2^n \cdot n^c$.

Lemma

IIP₆ has perimeter $2^n \cdot \exp(\Omega(n))$.

Claim A function with 1-mass α and 1-rectangles of size at most β has perimeter $\alpha/\sqrt{\beta}$.

Claim IIP₆ has 1-mass at least $\geq 2^{2n}/N^2$.

Claim IIP₆ has all 1-rectangles of size at most N^6 .

Hierarchy

What if we had an IIP oracle?

Hierarchy

What if we had an IIP oracle?

Theorem

For each t exists t' such that P^{IIP_t} cost of $IIP_{t'}$ is $\Omega(n)$

$$P^{EQ}\varsubsetneq P^{IIP_{t_1}}\varsubsetneq P^{IIP_{t_2}}\varsubsetneq \cdots \varsubsetneq BPP$$

Take Home

Remarks

- $ightharpoonup P^{EQ} \neq BPP$ even for total functions
- $\blacktriangleright \text{ Hierarchy } P^{EQ} \varsubsetneq P^{IIP_{t_1}} \varsubsetneq P^{IIP_{t_2}} \varsubsetneq \cdots \varsubsetneq BPP$

Take Home

Remarks

- $ightharpoonup P^{EQ} \neq BPP$ even for total functions
- ► Hierarchy $P^{EQ} \subsetneq P^{IIP_{t_1}} \subsetneq P^{IIP_{t_2}} \subsetneq \cdots \subsetneq BPP$

Open problems

- ▶ Is BPP \subset P^{NP}? (for total functions)
- ► In particular do BPP functions always have large rectangles?

Take Home

Remarks

- $ightharpoonup P^{EQ} \neq BPP$ even for total functions
- ► Hierarchy $P^{EQ} \subsetneq P^{IIP_{t_1}} \subsetneq P^{IIP_{t_2}} \subsetneq \cdots \subsetneq BPP$

Open problems

- ▶ Is BPP \subset P^{NP}? (for total functions)
- ► In particular do BPP functions always have large rectangles?

Thanks!