How Limited Interaction Hinders Real Communication (and What it Means for Proof and Circuit Complexity)

Marc Vinyals

KTH Royal Institute of Technology Stockholm, Sweden

joint work with Susanna F. de Rezende and Jakob Nordström

February 14, TIFR Mumbai, India

Setup

Prove CNF formula unsatisfiable.

Present proof on board.

- Write down axiom clauses
- Infer new clauses

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$$

Erase clauses to save space

$$F = \{x \lor y, \ \overline{x} \lor y, \ \overline{y}\}$$

Setup

Prove CNF formula unsatisfiable.

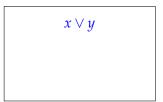
Present proof on board.

- ▶ Write down axiom clauses
- Infer new clauses

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$$

Erase clauses to save space

$$F = \{x \lor y, \ \overline{x} \lor y, \ \overline{y}\}$$



Setup

Prove CNF formula unsatisfiable.

Present proof on board.

- Write down axiom clauses
- Infer new clauses

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$$

Erase clauses to save space

$$F = \{x \lor y, \ \overline{x} \lor y, \ \overline{y}\}$$

$$x \lor y$$
 $\overline{x} \lor y$

Setup

Prove CNF formula unsatisfiable.

Present proof on board.

- Write down axiom clauses
- ► Infer new clauses

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$$

Erase clauses to save space

$$F = \{x \lor y, \ \overline{x} \lor y, \ \overline{y}\}$$

$$\begin{array}{c} x \lor y \\ \overline{x} \lor y \\ y \end{array}$$

Setup

Prove CNF formula unsatisfiable.

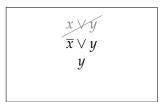
Present proof on board.

- Write down axiom clauses
- ► Infer new clauses

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$$

Erase clauses to save space

$$F = \{x \lor y, \ \overline{x} \lor y, \ \overline{y}\}$$



Setup

Prove CNF formula unsatisfiable.

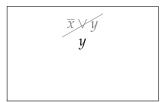
Present proof on board.

- Write down axiom clauses
- Infer new clauses

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$$

Erase clauses to save space

$$F = \{x \lor y, \ \overline{x} \lor y, \ \overline{y}\}$$



Setup

Prove CNF formula unsatisfiable.

Present proof on board.

- Write down axiom clauses
- Infer new clauses

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$$

Erase clauses to save space

Goal: derive empty clause \perp

$$F = \{x \lor y, \ \overline{x} \lor y, \ \overline{y}\}$$

 $\frac{y}{\overline{y}}$

Setup

Prove CNF formula unsatisfiable.

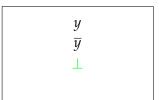
Present proof on board.

- Write down axiom clauses
- ► Infer new clauses

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$$

Erase clauses to save space

$$F = \{x \lor y, \ \overline{x} \lor y, \ \overline{y}\}$$



Setup

Prove CNF formula unsatisfiable.

Present proof on board.

- Write down axiom clauses
- ► Infer new clauses

$$\frac{C \vee x \qquad D \vee \overline{x}}{C \vee D}$$

Erase clauses to save space

Goal: derive empty clause \perp

$$F = \{x \lor y, \ \overline{x} \lor y, \ \overline{y}\}$$

 $rac{y}{\overline{y}}$

Questions

- How much time will this take? (Length)
- How large is the blackboard? (Space)

Proof Systems

Resolution

- Logic reasoning
- Most current SAT solvers
- Very well understood
 - Strong length lower bounds
 - Strong space lower bounds
 - Wide range of trade-offs

Proof Systems

Resolution

- Logic reasoning
- Most current SAT solvers
- Very well understood
 - Strong length lower bounds
 - Strong space lower bounds
 - Wide range of trade-offs

Cutting planes

- Pseudoboolean reasoning
- Experimental solvers
- Not well understood
 - Strong length lower bound
 - Weak space lower bounds
 - Some trade-offs

Cutting Planes

Work with inequalities

$$x \vee \overline{y} \quad \rightarrow \quad x + (1 - y) \ge 1 \quad \rightarrow \quad x - y \ge 0$$

Cutting Planes

Work with inequalities

$$x \vee \overline{y} \quad \rightarrow \quad x + (1 - y) \ge 1 \quad \rightarrow \quad x - y \ge 0$$

Rules

Variable axioms

$$\frac{1}{r > 0} \frac{1}{-r > -1}$$

Addition

$$\frac{\sum a_i x_i \ge a \qquad \sum b_i x_i \ge b}{\sum (a_i + b_i) x_i \ge a + b} \qquad \frac{\sum a_i x_i \ge a}{\sum (a_i / k) x_i \ge \lceil a / k \rceil}$$

Division

$$\frac{\sum a_i x_i \ge a}{\sum (a_i/k) x_i \ge \lceil a/k \rceil}$$

Cutting Planes

Work with inequalities

$$x \vee \overline{y} \rightarrow x + (1 - y) \ge 1 \rightarrow x - y \ge 0$$

Rules

Variable axioms

Addition

$$\frac{\sum a_i x_i \ge a \qquad \sum b_i x_i \ge b}{\sum (a_i + b_i) x_i \ge a + b} \qquad \frac{\sum a_i x_i \ge a}{\sum (a_i / k) x_i \ge \lceil a / k \rceil}$$

Division

$$\frac{\sum a_i x_i \ge a}{\sum (a_i/k) x_i \ge \lceil a/k \rceil}$$

Goal: derive 0 > 1

Length

$$\begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y \ge 1 \\ -y \ge 0 \end{vmatrix}$$

$$\begin{vmatrix} 2y \ge 1 \\ y \ge 1 \end{vmatrix} \begin{vmatrix} 2y \ge 1 \\ y \ge 1 \end{vmatrix} \begin{vmatrix} 2y \ge 1 \\ y \ge 1 \end{vmatrix}$$

$$\begin{vmatrix} 2y \ge 1 \\ y \ge 1 \end{vmatrix} \begin{vmatrix} 3y \ge 1 \\ 3y \ge 1 \end{vmatrix}$$

Length of a proof: # Lines

Length of refuting a formula: min over all proofs

Worst case $\exp(\Omega(N^{\epsilon}))$. [Pudlák '97]

Size

$$\begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y \ge 1 \\ -y \ge 0 \\ 0 \ge 1 \end{vmatrix}$$

$$\begin{vmatrix} y \ge 1 \\ y \ge 1 \end{vmatrix} \begin{vmatrix} y \ge 1 \\ y \ge 1 \end{vmatrix} \begin{vmatrix} y \ge 1 \\ y \ge 1 \end{vmatrix}$$

$$\begin{vmatrix} y \ge 1 \\ y \ge 1 \end{vmatrix} \begin{vmatrix} y \ge 1 \\ y \ge 1 \end{vmatrix}$$

Size of a proof: # Bits Size of refuting a formula: min over all proofs Size $\exp(O(N))$ always possible.

Line Space

[Esteban, Torán '99] [Alekhnovich, Ben Sasson, Razborov, Wigderson '00]

$$\begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y \ge 1 \\ -y \ge 0 \end{vmatrix}$$

$$2y \ge 1 \quad y \ge 1 \quad y \ge 1$$

$$1 \quad 2 \quad 3 \quad 4 \quad 1 \quad 2 \quad 3$$

Line Space of a proof: max lines in configuration (whiteboard) Line Space of refuting a formula: min over all proofs Line Space 5 always possible. [Galesi, Pudlák, Thapen '15]

Total Space

[Esteban, Torán '99] [Alekhnovich, Ben Sasson, Razborov, Wigderson '00]

$$\begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y \ge 1 \\ -y \ge 0 \end{vmatrix}$$

$$2y \ge 1 \quad y \ge 1 \quad y \ge 1$$

$$5 \quad 10 \quad 13 \quad 16 \quad 3 \quad 6 \quad 7$$

Total Space of a proof: \max bits in configuration (whiteboard) Total Space of refuting a formula: \min over all proofs Total Space $O(N^2)$ always possible; worst case $\Omega(N)$.

Question

Assume F has a proof in length L and another proof in space s. Is there a proof in length $\mathrm{O}(L)$ and space $\mathrm{O}(s)$?

Question

Assume F has a proof in length L and another proof in space s. Is there a proof in length O(L) and space O(s)?

No

Question

Assume F has a proof in length L and another proof in space s. Is there a proof in length O(L) and space O(s)?

No

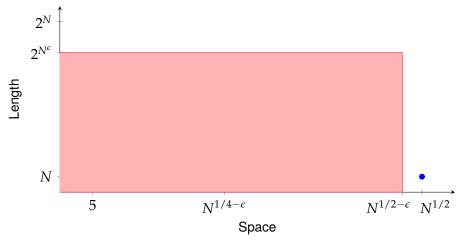
Previously studied for resolution and polynomial calculus [Ben Sasson, Nordström '11] [Beame, Beck, Impagliazzo '12] [Beck, Nordström, Tang '13]



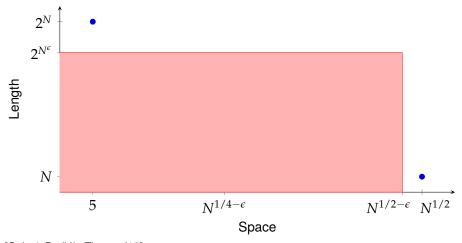
[Huynh, Nordström '12] Can do length O(N),

Can do length O(N), space $N^{1/2}$.

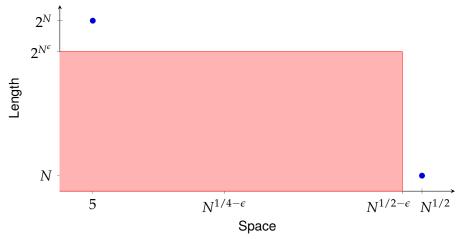
But space $N^{1/4-\epsilon}$ requires size $\exp(N^{\epsilon-o(1)})$.



[Göös, Pitassi '14] Can do length $N^{1+{\rm o}(1)}$, space $N^{1/2+{\rm o}(1)}$. But space $N^{1/2-\epsilon}$ requires size $\exp(N^{\epsilon-{\rm o}(1)})$.



[Galesi, Pudlák, Thapen '15] Can do length $\exp(N)$, space 5.



[Galesi, Pudlák, Thapen '15]

Can do length $\exp(N)$, space 5.

But exponential coefficients and quadratic total space.

Question

Assume F has a proof in small total space with polynomial coefficients. Are there still trade-offs?

Question

Assume F has a proof in small total space with polynomial coefficients. Are there still trade-offs?

Cannot answer with previous techniques (provably)

Question

Assume *F* has a proof in small total space with polynomial coefficients. Are there still trade-offs?

Cannot answer with previous techniques (provably)

This talk:

Yes

Theorem

There is a family of 6-CNF formulas with

▶ short proofs: size O(N), total space $O(N^{2/5})$;

Theorem

- ▶ short proofs: size O(N), total space $O(N^{2/5})$;
- ▶ small space proofs: total space $O(N^{1/40})$, size $exp(O(N^{1/40}))$;

Theorem

- ▶ short proofs: size O(N), total space $O(N^{2/5})$;
- ▶ small space proofs: total space $O(N^{1/40})$, size $exp(O(N^{1/40}))$;
- ▶ but line space $N^{1/20-\epsilon}$ requires length $\exp(\Omega(N^{1/40}))$.

Theorem

- ▶ short proofs: size O(N), total space $O(N^{2/5})$;
- ▶ small space proofs: total space $O(N^{1/40})$, size $exp(O(N^{1/40}))$;
- ▶ but line space $N^{1/20-\epsilon}$ requires length $\exp(\Omega(N^{1/40}))$.

- Upper bounds with constant coefficients, counting all bits.
- Lower bound with unbounded coefficients, only counting lines.
- Lower bound for semantic cutting planes.

Theorem

- ▶ short proofs: size O(N), total space $O(N^{2/5})$;
- ▶ small space proofs: total space $O(N^{1/40})$, size $exp(O(N^{1/40}))$;
- ▶ but line space $N^{1/20-\epsilon}$ requires length $\exp(\Omega(N^{1/40}))$.

- Upper bounds with constant coefficients, counting all bits.
- Lower bound with unbounded coefficients, only counting lines.
- Lower bound for semantic cutting planes.
- Holds for resolution and polynomial calculus proof systems.

Spin-off

Exponential separation of the monotone-AC hierarchy

Theorem

There is a monotone Boolean function with

- ▶ small monotone circuits: size O(n), depth $\log^i(n)$, fan-in $n^{4/5}$
- ▶ but monotone circuits of depth $O(\log^{i-1} n)$ require size $\exp(\Omega(n^{\epsilon}))$.

Superpolynomial separation known [Raz, McKenzie '97]

Devious Plan

Assume refutation in length L and space s

Assume refutation in length L and space s

1 Communication protocol for falsified clause search problem

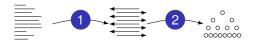
Assume refutation in length L and space s

1 Communication protocol for Search(F)

Assume refutation in length L and space s

 $\begin{tabular}{ll} \hline \begin{tabular}{ll} \textbf{Ommunication protocol for Search}(F) \\ \hline \end{tabular}$

2 Parallel decision tree for Search(F)

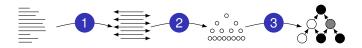


Assume refutation in length L and space s

Communication protocol for Search(F)

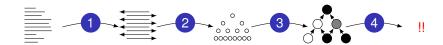
Parallel decision tree for Search(F)

3 Strategy for Dymond-Tompa pebble game



Assume refutation in length L and space s

- \downarrow
- lacktriangledown Communication protocol for Search(F)
- Parallel decision tree for Search(F)
 - \downarrow
- Strategy for Dymond–Tompa pebble game
- `
- 4 Construct graph with trade-offs



Refutation in length L, space $s \to \operatorname{Protocol}$ for Search(F) in $\log L$ rounds, communication $s \log L$

- Inspired by [Beame, Pitassi, Segerlind '05] [Beame, Huynh, Pitassi '10], explicit in [Huynh, Nordström '12].
- Key twists:
 - Real communication model
 - Measure number of rounds

Introduced in [Krajíček '98] to study cutting planes

Compare real numbers at cost 1

Alice

Referee

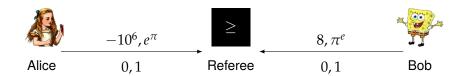
Bob

Introduced in [Krajíček '98] to study cutting planes

Compare real numbers at cost 1

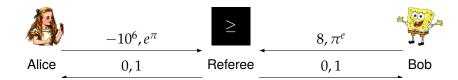
Introduced in [Krajíček '98] to study cutting planes

Compare real numbers at cost 1



Introduced in [Krajíček '98] to study cutting planes

Compare real numbers at cost 1



- \triangleright Simulates deterministic communication (Alice sends m, Bob sends 1/2)
- Stronger than deterministic communication (EQ)

- ➤ Alice ← assignment to x variables
- ▶ Bob ← assignment to y variables
- Task: Find falsified clause

- ► Alice ← assignment to x variables
- ▶ Bob \leftarrow assignment to y variables
- Task: Find falsified clause

- ► Alice ← assignment to x variables
- ▶ Bob ← assignment to y variables
- Task: Find falsified clause

- ► Alice ← assignment to x variables
- ▶ Bob ← assignment to y variables
- Task: Find falsified clause

- ▶ Alice evaluates $\sum a_i x_i a$ in s inequalities
- ▶ Bob evaluates $-\sum a_i y_i$ in s inequalities
- $ightharpoonup \alpha(\mathbb{C}) = 1$ iff Referee answers $111 \dots 1$

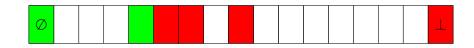
- ► Alice ← assignment to x variables
- ▶ Bob ← assignment to y variables
- Task: Find falsified clause

- ▶ Alice ← assignment to x variables
- ▶ Bob \leftarrow assignment to y variables
- Task: Find falsified clause

- ► Alice ← assignment to x variables
- ▶ Bob ← assignment to y variables
- Task: Find falsified clause

- ▶ Alice ← assignment to x variables
- ▶ Bob ← assignment to y variables
- Task: Find falsified clause

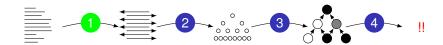
- ► Alice ← assignment to x variables
- ▶ Bob ← assignment to y variables
- Task: Find falsified clause



- $ightharpoonup \alpha(\mathbb{C}) = 1 \quad \alpha(\mathbb{C} \cup \{A\}) = 0 \quad \Rightarrow \quad \alpha(A) = 0$
- ▶ $\log L$ rounds, communication $s \log L$

Assume refutation in length L and space s

- ① Communication protocol for Search(F) in $\log L$ rounds and communication $s \log L$
- 2 Parallel decision tree for Search(F)
- 3 Strategy for Dymond-Tompa pebble game
- Construct graph with trade-offs



Protocol for Lift(S) in r rounds, communication $c \rightarrow$ Parallel decision tree for S of depth r, c queries

Lifted Problem

- Function $f(z_1, \ldots, z_n)$
- ▶ Alice $\leftarrow n$ indices x_1, \ldots, x_n
- ▶ Bob $\leftarrow n$ arrays y_1, \ldots, y_n

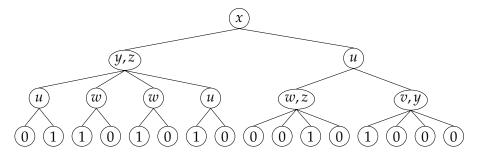
$$z_1 = y_1[5] = 1$$
 5
 $z_2 = y_2[1] = 0$ 1

0	0	1	0	0	1	1	1
1	0	0	1	0	1	1	1

▶ Lifted function Lift(f)(x, y) = f(y₁[x₁],...,y_n[x_n])

Parallel Decision Trees

Decision tree with many queries per node [Valiant '75]



Depth Longest branch

Queries # queries in a branch

Protocol for Lift(S) in r rounds, communication $c \to Parallel$ decision tree for S of depth r, c queries

Devious Plan **②**: Protocol ← Decision Tree

Protocol for Lift(S) in r rounds, communication $c \leftarrow$ Parallel decision tree for S of depth r, c queries

Communication

Decision tree Query $\{z_3, z_{28}\}$

Devious Plan **②**: Protocol ← Decision Tree

Protocol for Lift(S) in r rounds, communication $c \leftarrow$ Parallel decision tree for S of depth r, c queries

Communication

Alice sends x_3 , x_{28} Bob sends $y_3[x_3]$, $y_{28}[x_{28}]$

Decision tree

Query $\{z_3, z_{28}\}$

Protocol for Lift(S) in r rounds, communication $c \to Parallel$ decision tree for S of depth r, c queries

Communication

Decision tree

Alice sends $x_1 + x_2 + \cdots + x_n$

Protocol for Lift(S) in r rounds, communication $c \to Parallel$ decision tree for S of depth r, c queries

Communication

Alice sends $x_1 + x_2 + \cdots + x_n$

Decision tree

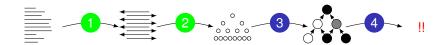
???

Protocol for Lift(S) in r rounds, communication $c \rightarrow$ Parallel decision tree for S of depth r, c queries

- Main technical result (Simulation Theorem)
 - Technique from [Raz, McKenzie '97]
 - Adapted to real communication in [Bonet, Esteban, Galesi, Johannsen '98]
 - Connection to decision trees made explicit in [Göös, Pitassi, Watson '15]
- Our contribution
 - Introduce rounds
 - Adapt to real communication preserving rounds

Assume refutation of lifted formula in length L and space s

- Communication protocol for Lift(Search(F)) in $\log L$ rounds and communication $s \log L$
- 2 Parallel decision tree for Search(F) of depth $\log L$ and $s \log L$ queries
- 3 Strategy for Dymond-Tompa pebble game
- Construct graph with trade-offs



Devious Plan 3: Decision Tree → Dymond-Tompa

Parallel decision tree for Search(Peb_G) of depth r, c queries \leftrightarrow Dymond–Tompa pebble game strategy for r rounds, c pebbles

Pebbling Formulas

Sources are true

и

v

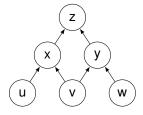
w

Truth propagates

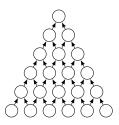
$$(u \land v) \to x$$
$$(v \land w) \to y$$
$$(x \land y) \to z$$

Sink is false

 \overline{z}

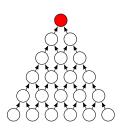


2-player pebble game on a DAG [Dymond, Dompa '85]



2-player pebble game on a DAG [Dymond, Dompa '85]

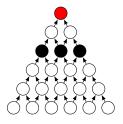
Start with a challenged pebble on the sink



Rounds 0

2-player pebble game on a DAG [Dymond, Dompa '85]

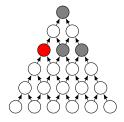
- Start with a challenged pebble on the sink
- Each round:
 - Pebbler adds some pebbles



Rounds 1

2-player pebble game on a DAG [Dymond, Dompa '85]

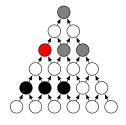
- Start with a challenged pebble on the sink
- Each round:
 - Pebbler adds some pebbles
 - Challenger may challenge one new pebble



Rounds 1

2-player pebble game on a DAG [Dymond, Dompa '85]

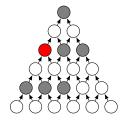
- Start with a challenged pebble on the sink
- Each round:
 - Pebbler adds some pebbles
 - Challenger may challenge one new pebble



Rounds 2

2-player pebble game on a DAG [Dymond, Dompa '85]

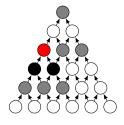
- Start with a challenged pebble on the sink
- Each round:
 - Pebbler adds some pebbles
 - Challenger may challenge one new pebble



Rounds 2

2-player pebble game on a DAG [Dymond, Dompa '85]

- Start with a challenged pebble on the sink
- Each round:
 - Pebbler adds some pebbles
 - Challenger may challenge one new pebble



Rounds 3

2-player pebble game on a DAG [Dymond, Dompa '85]

- Start with a challenged pebble on the sink
- Each round:
 - Pebbler adds some pebbles
 - Challenger may challenge one new pebble
- Ends when challenged pebble is surrounded



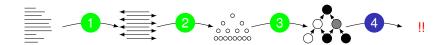
Devious Plan 3: Decision Tree \rightarrow Dymond–Tompa

Parallel decision tree for Search(Peb_G) of depth r, c queries \leftrightarrow Dymond–Tompa pebble game strategy for r rounds, c pebbles

- Done in [Chan '13]
- Tweak to preserve rounds

Assume refutation of lifted pebbling formula in length L and space s

- ① Communication protocol for Lift(Search(F)) in $\log L$ rounds and communication $s \log L$
- 2 Parallel decision tree for Search(F) of depth $\log L$ and $s \log L$ queries
- 3 Strategy for Dymond–Tompa pebble game for $\log L$ rounds and $s\log L$ pebbles [Chan '13]
- Construct graph with trade-offs



Devious Plan 4: Trade-off for Dymond-Tompa

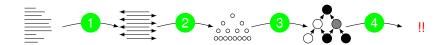
Graph where r-round DT game needs n/4 pebbles

- Stack of r+1 butterfly graphs
- Can do $2r \log n$ pebbles in $r \log n$ rounds
- ▶ Or $n \log(r \log n)$ pebbles in $\log(r \log n)$ rounds



Assume refutation of lifted pebbling formula in length L and space s

- ① Communication protocol for Lift(Search(F)) in $\log L$ rounds and communication $s \log L$
- 2 Parallel decision tree for Search(F) of depth $\log L$ and $s \log L$ queries
- 3 Strategy for Dymond–Tompa pebble game for $\log L$ rounds and $s \log L$ pebbles
- Construct graph where such strategy does not exist



Take Home

Remarks

- Strong size-space trade-offs for cutting planes
- Hold for resolution, polynomial calculus, cutting planes
- Key to measure rounds

Take Home

Remarks

- Strong size-space trade-offs for cutting planes
- Hold for resolution, polynomial calculus, cutting planes
- Key to measure rounds

Open problems

- Smaller lift size
 - Progress in [Chattopadhyay, Koucký, Loff, Mukhopadhyay '17]
- Stronger models of communication

Take Home

Remarks

- Strong size-space trade-offs for cutting planes
- Hold for resolution, polynomial calculus, cutting planes
- Key to measure rounds

Open problems

- Smaller lift size
 - Progress in [Chattopadhyay, Koucký, Loff, Mukhopadhyay '17]
- Stronger models of communication

Thanks!