How Limited Interaction Hinders Real Communication (and What it Means for Proof and Circuit Complexity)

Marc Vinyals

KTH Royal Institute of Technology Stockholm, Sweden

joint work with Susanna F. de Rezende and Jakob Nordström

Proof Complexity and Beyond Workshop August 18 2017, Oberwolfach, Germany

Cutting Planes

Work with linear inequalities

$$x \vee \overline{y} \quad \rightarrow \quad x + (1 - y) \ge 1 \quad \rightarrow \quad x - y \ge 0$$

Rules

Variable axioms

Addition

$$\frac{\sum a_i x_i \ge a \qquad \sum b_i x_i \ge b}{\sum (a_i + b_i) x_i \ge a + b} \qquad \frac{\sum a_i x_i \ge a}{\sum (a_i / k) x_i \ge \lceil a / k \rceil}$$

Division

$$\frac{\sum a_i x_i \ge a}{\sum (a_i/k) x_i \ge \lceil a/k \rceil}$$

Goal: derive 0 > 1

$$F = \{x + y \ge 1, y - x \ge 0, -y \ge 0\}$$

- Write down axiom inequalities
- Infer new inequalities
- Erase inequalities to save space

$$F = \{x + y \ge 1, y - x \ge 0, -y \ge 0\}$$

- Write down axiom inequalities
- Infer new inequalities
- Erase inequalities to save space

$$y + x \ge 1$$

$$F = \{x + y \ge 1, y - x \ge 0, -y \ge 0\}$$

- Write down axiom inequalities
- Infer new inequalities
- Erase inequalities to save space

$$y + x \ge 1$$

$$y - x \ge 0$$

$$F = \{x + y \ge 1, y - x \ge 0, -y \ge 0\}$$

- Write down axiom inequalities
- Infer new inequalities
- Erase inequalities to save space

$$y + x \ge 1$$
$$y - x \ge 0$$
$$2y \ge 1$$

$$F = \{x + y \ge 1, y - x \ge 0, -y \ge 0\}$$

- Write down axiom inequalities
- Infer new inequalities
- Erase inequalities to save space

$$y + x \ge 1$$

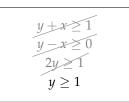
$$y - x \ge 0$$

$$2y \ge 1$$

$$y \ge 1$$

$$F = \{x + y \ge 1, y - x \ge 0, -y \ge 0\}$$

- Write down axiom inequalities
- Infer new inequalities
- Erase inequalities to save space



$$F = \{x + y \ge 1, y - x \ge 0, -y \ge 0\}$$

- Write down axiom inequalities
- Infer new inequalities
- Erase inequalities to save space

$$y \ge 1$$

$$-y \ge 0$$

$$F = \{x + y \ge 1, y - x \ge 0, -y \ge 0\}$$

- Write down axiom inequalities
- Infer new inequalities
- Erase inequalities to save space

$$y \ge 1$$
$$-y \ge 0$$
$$0 > 1$$

$$F = \{x + y \ge 1, y - x \ge 0, -y \ge 0\}$$

- Write down axiom inequalities
- Infer new inequalities
- Erase inequalities to save space

$$\begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y+x \ge 1 \\ y-x \ge 0 \end{vmatrix} \begin{vmatrix} y \ge 1 \\ -y \ge 0 \end{vmatrix}$$

$$\begin{vmatrix} 2y \ge 1 \\ y \ge 1 \end{vmatrix}$$

$$\begin{vmatrix} 2y \ge 1 \\ y \ge 1 \end{vmatrix}$$

$$\begin{vmatrix} 2y \ge 1 \\ y \ge 1 \end{vmatrix}$$

$$\begin{vmatrix} 2y \ge 1 \\ y \ge 1 \end{vmatrix}$$

Complexity Measures

Size # bits in proof

► Size $2^{O(N)}$ always possible.

Length # lines in proof

lacksquare Worst case $2^{\Omega(N^\epsilon)}$. [Pudlák '97]

Complexity Measures

Size # bits in proof

► Size $2^{O(N)}$ always possible.

Length # lines in proof

• Worst case $2^{\Omega(N^{\epsilon})}$. [Pudlák '97]

Total space max # bits in memory at the same time

▶ Space $O(N^2)$ always possible; worst case $\Omega(N)$.

Line space max # lines in memory at the same time

Space 5 always possible. [Galesi, Pudlák, Thapen '15]

Question

Assume F has a proof in length L and another proof in space s. Is there a proof in length $\mathrm{O}(L)$ and space $\mathrm{O}(s)$?

Question

Assume F has a proof in length L and another proof in space s. Is there a proof in length O(L) and space O(s)?

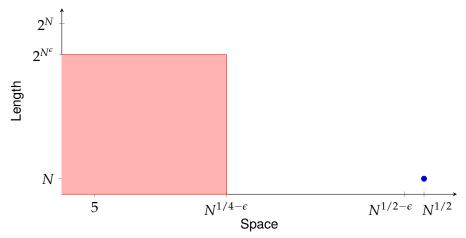
No

Question

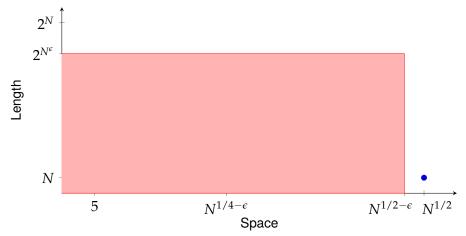
Assume F has a proof in length L and another proof in space s. Is there a proof in length O(L) and space O(s)?

No

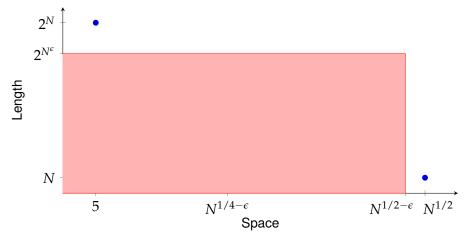
Previously studied for resolution and polynomial calculus [Ben Sasson, Nordström '11] [Beame, Beck, Impagliazzo '12] [Beck, Nordström, Tang '13]



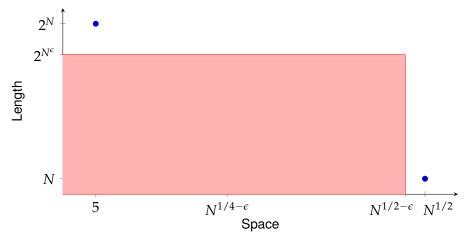
[Huynh, Nordström '12] Can do length $\mathrm{O}(N)$, space $N^{1/2}$. But space $N^{1/4-\epsilon}$ requires size $\exp(N^{\epsilon-\mathrm{o}(1)})$.



[Göös, Pitassi '14] Can do length $N^{1+{\rm o}(1)}$, space $N^{1/2+{\rm o}(1)}$. But space $N^{1/2-\epsilon}$ requires size $\exp(N^{\epsilon-{\rm o}(1)})$.



[Galesi, Pudlák, Thapen '15] Can do length 2^N , space 5.



[Galesi, Pudlák, Thapen '15] Can do length 2^N , space 5. But exponential coefficients and quadratic total space.

Question

Assume *F* has a proof in small total space with polynomial coefficients. Are there still trade-offs?

Question

Assume F has a proof in small total space with polynomial coefficients. Are there still trade-offs?

This talk:

Yes

Question

Assume F has a proof in small total space with polynomial coefficients. Are there still trade-offs?

This talk:

Yes

Cannot answer with previous techniques (provably)

Theorem

There is a family of 6-CNF formulas with

▶ short proofs: size O(N), total space $O(N^{2/5})$;

Theorem

- ▶ short proofs: size O(N), total space $O(N^{2/5})$;
- ▶ small space proofs: total space $O(N^{1/40})$, size $2^{O(N^{1/40})}$;

Theorem

- ▶ short proofs: size O(N), total space $O(N^{2/5})$;
- ▶ small space proofs: total space $O(N^{1/40})$, size $2^{O(N^{1/40})}$;
- ▶ but line space $N^{1/20-\epsilon}$ requires length $\exp(\Omega(N^{1/40}))$.

Theorem

- ▶ short proofs: size O(N), total space $O(N^{2/5})$;
- ► small space proofs: total space $O(N^{1/40})$, size $2^{O(N^{1/40})}$;
- ▶ but line space $N^{1/20-\epsilon}$ requires length $\exp(\Omega(N^{1/40}))$.

- Upper bounds with constant coefficients, counting all bits.
- Lower bound with unbounded coefficients, only counting lines.
- Lower bound for semantic cutting planes.

Theorem

- ▶ short proofs: size O(N), total space $O(N^{2/5})$;
- ► small space proofs: total space $O(N^{1/40})$, size $2^{O(N^{1/40})}$;
- ▶ but line space $N^{1/20-\epsilon}$ requires length $\exp(\Omega(N^{1/40}))$.

- Upper bounds with constant coefficients, counting all bits.
- Lower bound with unbounded coefficients, only counting lines.
- Lower bound for semantic cutting planes.
- Holds for resolution and polynomial calculus proof systems.

Spin-off

Exponential separation of the monotone-AC hierarchy

Theorem

There is a monotone Boolean function with

- ▶ small monotone circuits: size O(n), depth $\log^i(n)$, fan-in $n^{4/5}$
- ▶ but monotone circuits of depth $O(\log^{i-1} n)$ require size $\exp(\Omega(n^{\epsilon}))$.

Superpolynomial separation known [Raz, McKenzie '97]

Assume refutation in length L and space s

Assume refutation in length L and space s

1 Communication protocol for falsified clause search problem

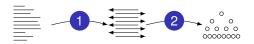
Assume refutation in length L and space s

1 Communication protocol for Search(F)

Assume refutation in length L and space s

 $\textbf{ 1} \ \, \textbf{ Communication protocol for Search}(F) \\$

Parallel decision tree for Search(F)



Assume refutation in length L and space s

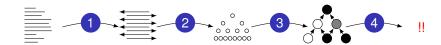
Communication protocol for Search(F)

Parallel decision tree for Search(F)

3 Strategy for Dymond-Tompa pebble game

Assume refutation in length L and space s

- \downarrow
- Parallel decision tree for Search(F)
 - \downarrow
- 3 Strategy for Dymond-Tompa pebble game
- 4 Construct graph with trade-offs



Devious Plan \bigcirc : Proof \rightarrow Protocol

Refutation in length L, space $s \to \operatorname{Protocol}$ for Search(F) in $\log L$ rounds, communication $s \log L$

- Inspired by [Beame, Pitassi, Segerlind '05] [Beame, Huynh, Pitassi '10], explicit in [Huynh, Nordström '12].
- Key twists:
 - Real communication model
 - Measure number of rounds

Introduced by [Krajíček '98] to study cutting planes

Compare real numbers at cost 1

Alice

Referee

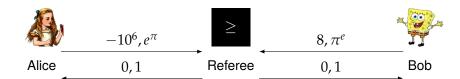
Bob

Introduced by [Krajíček '98] to study cutting planes

Compare real numbers at cost 1

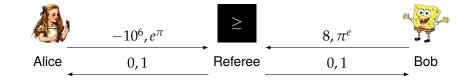
Introduced by [Krajíček '98] to study cutting planes

Compare real numbers at cost 1



Introduced by [Krajíček '98] to study cutting planes

Compare real numbers at cost 1



- \triangleright Simulates deterministic communication (Alice sends m, Bob sends 1/2)
- Stronger than deterministic communication (EQ)

- ➤ Alice ← assignment to x variables
- ▶ Bob ← assignment to y variables
- Task: Find falsified clause

- ► Alice ← assignment to x variables
- ▶ Bob ← assignment to y variables
- Task: Find falsified clause

- ► Alice ← assignment to x variables
- ▶ Bob ← assignment to y variables
- Task: Find falsified clause

- ▶ Alice ← assignment to x variables
- ▶ Bob ← assignment to y variables
- Task: Find falsified clause

- ▶ Alice evaluates $\sum a_i x_i a$ in s inequalities
- ▶ Bob evaluates $-\sum a_i y_i$ in s inequalities
- $ightharpoonup \alpha(\mathbb{C}) = 1$ iff Referee answers $111 \dots 1$

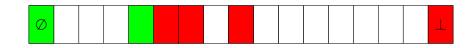
- ► Alice ← assignment to x variables
- ▶ Bob ← assignment to y variables
- Task: Find falsified clause

- ▶ Alice ← assignment to x variables
- ▶ Bob ← assignment to y variables
- Task: Find falsified clause

- ► Alice ← assignment to x variables
- ▶ Bob ← assignment to y variables
- Task: Find falsified clause

- ▶ Alice ← assignment to x variables
- ▶ Bob ← assignment to y variables
- Task: Find falsified clause

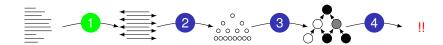
- ► Alice ← assignment to x variables
- ▶ Bob ← assignment to y variables
- Task: Find falsified clause



- $ightharpoonup \alpha(\mathbb{C}) = 1 \quad \alpha(\mathbb{C} \cup \{A\}) = 0 \quad \Rightarrow \quad \alpha(A) = 0$
- ▶ $\log L$ rounds, communication $s \log L$

Assume refutation in length L and space s

- ① Communication protocol for Search(F) in $\log L$ rounds and communication $s \log L$
- 2 Parallel decision tree for Search(F)
- 3 Strategy for Dymond-Tompa pebble game
- 4 Construct graph with trade-offs



Protocol for Lift(S) in r rounds, communication $c \rightarrow$ Parallel decision tree for S of depth r, c queries

Lifted Problem

- ▶ Function $f(z_1, ..., z_n)$
- ▶ Alice $\leftarrow n$ indices x_1, \ldots, x_n
- ▶ Bob $\leftarrow n$ arrays y_1, \ldots, y_n

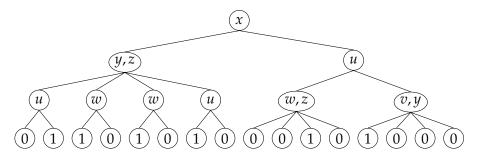
$$z_1 = y_1[5] = 1$$
 5
 $z_2 = y_2[1] = 0$ 1

0	0	1	0	0	1	1	1
1	0	0	1	0	1	1	1

Lifted function Lift $(f)(x,y) = f(y_1[x_1], \dots, y_n[x_n])$

Parallel Decision Trees

Decision tree with many queries per node [Valiant '75]



Depth Longest branch

Queries # queries in a branch

Protocol for Lift(S) in r rounds, communication $c \to Parallel$ decision tree for S of depth r, c queries

Devious Plan **②**: Protocol ← Decision Tree

Protocol for Lift(S) in r rounds, communication $c \leftarrow$ Parallel decision tree for S of depth r, c queries

Communication

Decision tree Query $\{z_3, z_{28}\}$

Devious Plan **②**: Protocol ← Decision Tree

Protocol for Lift(S) in r rounds, communication $c \leftarrow$ Parallel decision tree for S of depth r, c queries

Communication

Alice sends x_3 , x_{28} Bob sends $y_3[x_3]$, $y_{28}[x_{28}]$

Decision tree

Query $\{z_3, z_{28}\}$

Protocol for Lift(S) in r rounds, communication $c \to Parallel$ decision tree for S of depth r, c queries

Communication

Decision tree

Alice sends $x_1 + x_2 + \cdots + x_n$

Protocol for Lift(S) in r rounds, communication $c \to Parallel$ decision tree for S of depth r, c queries

Communication

Alice sends $x_1 + x_2 + \cdots + x_n$

Decision tree

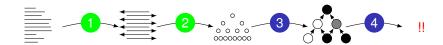
???

Protocol for Lift(S) in r rounds, communication $c \rightarrow$ Parallel decision tree for S of depth r, c queries

- Main technical result (Simulation Theorem)
 - Technique from [Raz, McKenzie '97]
 - Adapted to real communication in [Bonet, Esteban, Galesi, Johannsen '98]
 - Connection to decision trees made explicit in [Göös, Pitassi, Watson '15]
- Our contribution
 - Introduce rounds
 - Adapt to real communication preserving rounds

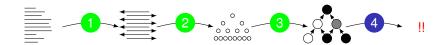
Assume refutation of lifted formula in length L and space s

- Communication protocol for Lift(Search(F)) in $\log L$ rounds and communication $s \log L$
- Parallel decision tree for Search(F) of depth log L and s log L queries
- 3 Strategy for Dymond-Tompa pebble game
- Construct graph with trade-offs



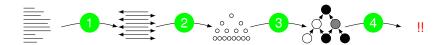
Assume refutation of lifted pebbling formula in length L and space s

- ① Communication protocol for Lift(Search(F)) in $\log L$ rounds and communication $s \log L$
- 2 Parallel decision tree for Search(F) of depth $\log L$ and $s \log L$ queries
- 3 Strategy for Dymond–Tompa pebble game for $\log L$ rounds and $s\log L$ pebbles [Chan '13]
- Construct graph with trade-offs



Assume refutation of lifted pebbling formula in length L and space s

- 1 Communication protocol for Lift(Search(F)) in $\log L$ rounds and communication $s \log L$
- Parallel decision tree for Search(F) of depth log L and s log L queries
- 3 Strategy for Dymond–Tompa pebble game for $\log L$ rounds and $s \log L$ pebbles
- Construct graph where such strategy does not exist



Take Home

Remarks

- Strong size-space trade-offs for cutting planes
- ► Hold for resolution, polynomial calculus, cutting planes
- Key to measure rounds

Take Home

Remarks

- Strong size-space trade-offs for cutting planes
- ► Hold for resolution, polynomial calculus, cutting planes
- Key to measure rounds

Open problems

- Smaller lift size
- Stronger models of communication

Take Home

Remarks

- Strong size-space trade-offs for cutting planes
- ► Hold for resolution, polynomial calculus, cutting planes
- Key to measure rounds

Open problems

- Smaller lift size
- Stronger models of communication

Thanks!