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Background

Length

Cutting Planes

Work with inequalities
xVy — x+(1-y)>1 — x—y>0

Rules
Variable axioms Addition Division
Y.aix; > a Y.bixi > b Y.aixi >a
x>0 —x>-1 Y(ai+bi)xi >a+b Y(ai/k)x; > [a/k]
Goal: derive 0 > 1
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CP in Practice

Question

How can we implement CP in practice? J
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How can we implement CP in practice?

» When do we add inequalities?
» How important is division?

» Do we need exponential coefficients?
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Background Length Space

CP Simulates Resolution

xVyVz  XVyVt x+y+z=>1 —x+y—t>-1
yVzVt 2y+z—t>0
2y +2z -2t > —1
y+z—t>0
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Background Length

CP Simulates Resolution

xVyVz  XVyVt x+y+z=>1 —x+y—t>-1
yVzVt 2y+z—t>0
2y +2z -2t > —1
y+z—t>0

» Length increases at most a factor n
» Coefficients 2 enough
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Background Length

Space

Separation of CP and Resolution
Pigeonhole principle:

> \/jLq x; for each pigeon

» {Xj V X } ;4 for each hole

Marc Vinyals (KTH) The Size of Coefficients in Cutting Planes Proofs 4/17



Background

Length Space

Separation of CP and Resolution
Pigeonhole principle:

> \/jLq x; for each pigeon

» {Xj V X } ;4 for each hole

© Derive Y1} x;; < 1 for each hole

—Xx11 —Xp1 > —1 —x11 —Xx31 > —1 —Xp1 —Xx31 > —1
—ZXH — 2x21 — ZX31 > -3
—X11 — X1 — X371 = —1

® Add all inequalities

{Z] L X > 1}n+1 {Zn+l _xl] _1}] .
0>1
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Space

Exponential Lower Bounds

Cligue vs coloring formula: “There is

» asetof edges E,

» amapping ¢ : [k] — V such that c([k]) is a k-clique, and
» ak —1-coloring x : V — [k — 1]
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» asetof edges E,

» amapping ¢ : [k] — V such that c([k]) is a k-clique, and
» ak —1-coloring x : V — [k — 1]

Needs exponential length in CP. Proof:
© Interpolation — monotone circuit for k-clique
® Lower bound for monotone circuits
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Background

Length Space

Exponential Lower Bounds

Cligue vs coloring formula: “There is

» asetof edges E,

» amapping ¢ : [k] — V such that c([k]) is a k-clique, and
» ak —1-coloring x : V — [k — 1]

Needs exponential length in CP. Proof:
© Interpolation — monotone circuit for k-clique
® Lower bound for monotone circuits

» First proved for CP* [Bonet, Pitassi, Raz '95]

» Proof for CP uses lower bound for real circuits [Pudlak '97]
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Background Length

Space

Weak Division

» Practical solvers use weaker division rule.

» Can solve PHP in polynomial time if properly encoded.
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Background Length

Space

Weak Division

» Practical solvers use weaker division rule.

» Can solve PHP in polynomial time if properly encoded.

Theorem

Resolution simulates CP* with weak division starting from CNF.

What about unbounded coefficients?
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Small Space

Line space: max # inequalities in memory
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Background Length

Small Space

Line space: max # inequalities in memory

Theorem ([Galesi, Pudlék, Thapen '15])
Every formula has a CP proof in line space 5.

» Exponential coefficients
» Exponential length
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Background Length

Small Space

Line space: max # inequalities in memory

Theorem ([Galesi, Pudidk, Thapen '15])
Every formula has a CP proof in line space 5.

» Exponential coefficients
» Exponential length

Theorem ([Galesi, Pudiak, Thapen '15])

There is a formula that requires line space Q) (log log log n) in CPX.
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Background

Length

Separation of CP and Resolution

Can we separate resolution and CP* space?

Theorem ([Galesi, Pudlék, Thapen '15])
PHP has a CP? proof in line space 5. J
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Background Length Space

Separation of CP and Resolution

Can we separate resolution and CP* space?

Theorem ([Galesi, Pudlak, Thapen '15])

PHP has a CP? proof in line space 5.

Can we separate resolution and CP* space for easy formulas?

Theorem

There is a family of 9-CNFs of n variables and size O(n) such that
» There are CP? proofs of length O(n) and line space O(1)

» There are resolution proofs of length O(n)

» Resolution proofs require line space Q) (\/n)
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Background

Length

Pebbling Formulas

Graph G given. Formula Pebg defined as:

»

>

For each vertex v, a variable v.

For each source s, a constraint

S.

For each non-source v with preds u and w,

a constraint
UNW — v

For the sink z, the constraint

Z.
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Background Length

Substituted Pebbling Formulas

Graph G given. Formula Pebg[>] defined as: %1 V#2  t#1Vi3

. w1 Vwy wpVws
» For each vertex v, 3 variables v1, vy, v3.

» For each source s, a constraint

$1+ 5y +53 > 2.

» For each non-source v with preds u and w,

a constraint
[Ll1 +uy +us > 2]/\
[w1 +wy, + w3 > 2] —
[01 + vy +03 > 2]
» For the sink z, the constraint
Z1+2z2+2z3 < 1

Marc Vinyals (KTH)

Uy Vus
wy V w3
U NVuyVwy VwyVzy Vi

VIV VT,V Vi

Z1Vzy zZ1VZz3
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Background Length

Threshold Pebbling Formulas

Graph G given. Formula Pebg[T] defined as:  #1VH#2 1 Vs Uy Vs

. w1 Vwy wiVwsy wyVws
» For each vertex v, 3 variables v1, v;, v3. o
. U1 ViuyVzyVxyVzs
» For each source s, a constraint

$1+ 5y +53 > 2.

» For each non-source v with preds u and w,
a constraint MV Vo Vw, Vz1Vz
Uy +ux +uz+wy +wy +ws < MV Vo, Vi Vzy Vs
2(01 + vy +ZJ3)

U VuzVzyVxyVzs

» For the sink z, the constraint wpVugVwyVawsVzyVizs
z1+20+23 < 1.

T VIR Vi VT VW, VsV 2z

Z1Vzy z1VZzz W Vws
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Background Length

CP2 Upper Bound
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Background Length

CP2 Upper Bound

x%,l + x%/l + x%/] 2 2
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Background Length

CP2 Upper Bound

2011 +2x7, + 2%, > 4
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Background Length

CP2 Upper Bound

Zx},l + inl + Zx?,ﬁ—
2xi2 + inz + Zx:{’,z—l—
Zx},g) + in_q, + Zx?l3+
201 4+ 2174+ 2274 > 16
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ackground Length

CP2 Upper Bound

Zx},l + inl + 2x?l1+
2x1 5 + 227, + 223 5+
Zx},g) + 2xi3 + Zx?l3+
201 4+ 2174+ 2274 > 16

1 2 3
—X11 — X1 — X1+
1 2 3
—X1p = X1p — X{p T

2x%’1 + ZX%,l + 2x3/1 2 0
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ackground Length

CP2 Upper Bound

X1+ i+ g+

Yo+ X+ X+
Zx},g) + 2xi3 + Zx?l3+
2x},4 + Zx%A + 2x‘;’,4+
2631 +2x5, +2x3, > 16
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Background Length

CP2 Upper Bound

inl + Zx%,l + 2x§l1+
2x%,2 + 23(%/2 + 2x§/2—|—
2.7(%/3 + 2x§,3 + 2x§l3+
2x) 4+ 225, + 213, > 16
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Background Length

CP2 Upper Bound

in,l + 2xil + 2x2,1+
23@1,2 + inZ + 2x2/2—|—
ing) + 2xi3 + 2x2,3+
2044+ 2054 +2x3, > 16
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Background Length

CP2 Upper Bound

Xi 1 + xil + x2’1+
1 2

Xip+ Xjp+ X+

Xigj + xi3 + x2’3+

1 2
X4,4 + x4,4 + X?IA Z 8
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Background Length

CP2 Upper Bound

Zx%,l + 2x§/1 + 2x§,1+
2x§,2 + 2x§,2 + 23(%/2 > 8
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Background Length

CP2 Upper Bound

x%/l + x%/l + x2’1 Z 2
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Length

CP2 Upper Bound
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Background Length

Resolution Lower Bound

Proof sketch

© Resolution proof of Pebg[T] in line space s.
® Resolution proof of Pebg in variable space s.
® Black-white pebbling of G in s pebbles.

@ G needs /1 pebbles.
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Background Length

F[T]to F

Project each configuration ID to a configuration C
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Background Length

F[T]to F

Project each configuration ID to a configuration C

Properties:
» Cq,...,C; is (almost) a resolution refutation of Pebg

» VarSp(C) < Sp(D)
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Background Length

F[T]to F

Project each configuration ID to a configuration C

Properties:
» Cq,...,C; is (almost) a resolution refutation of Pebg

» VarSp(C) < Sp(D)

Let B = Pebg[T] \ Pebg[>].
CecCif

» ID U B implies C; and

» ID U B does not imply any C' C D.
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Background

Recap

Length

CP* CP
Length
Simulates resolution Y Y
Separation wrt resolution Y Y
Exponential lower bound Y Y
Resolution simulates weak division Y ?
Space
Simulates resolution Y Y
Constant upper bound ? Y
Superconstant lower bound CP< N
Separation wrt resolution Y Y
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Background Length Space

Recap
CP* CP
Length
Simulates resolution Y Y
Separation wrt resolution Y Y
Exponential lower bound Y Y
Resolution simulates weak division Y ?
Space
Simulates resolution Y Y
Constant upper bound ? Y
Superconstant lower bound CP< N
Separation wrt resolution Y Y
Question

Can we separate CP* and CP?
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Background Length

Can we Separate Monotone and Real Circuits?

Yes!
0 hw(x) <k
f is ak-slice functionif f(x) = ¢ 1 hw(x) >k
* otherwise

Theorem ([Rosenbloom '97])

Every slice function can be computed with a monotone real circuit of size O(n)J
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Can we Separate Monotone and Real Circuits?

Yes!
0 hw(x) <k
f is ak-slice functionif f(x) = ¢ 1 hw(x) >k
* otherwise

Theorem ([Rosenbloom '97])

Every slice function can be computed with a monotone real circuit of size O(n)J

n
There are 2(i/2) n/2-slice functions; therefore most slice functions require
exponential boolean circuits.
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Background Length

Space

Can we Separate Monotone and Real Circuits?

Yes!
0 hw(x) <k
f is ak-slice functionif f(x) = ¢ 1 hw(x) >k
* otherwise

Theorem ([Rosenbloom '97])

Every slice function can be computed with a monotone real circuit of size O(n)J

n
There are 2(i/2) n/2-slice functions; therefore most slice functions require
exponential boolean circuits.

But this is not explicit. ...
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Background Length Space

Can we Explicitly Separate Monotone and Real Circuits?

Want a more delicate argument than counting.
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Background Length

Space

Can we Explicitly Separate Monotone and Real Circuits?

Want a more delicate argument than counting.

Theorem ([valiant '86])

If a slice function f has a boolean circuit of size m,
then f has a monotone boolean circuit of size m + O(n log® n).

An w(n log2 n) lower bound would yield superlinear circuit lower bounds.
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Background Length

Space

Can we Explicitly Separate Monotone and Real Circuits?

Want a more delicate argument than counting.

Theorem ([valiant '86])

If a slice function f has a boolean circuit of size m,
then f has a monotone boolean circuit of size m + O(n log® n).

An w(n log2 n) lower bound would yield superlinear circuit lower bounds.

Maybe too ambitious. ..
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Background Length

Space

Communication Complexity

Karchmer-Wigderson game
» Alice gets x € f~1(0), Bobgets y € f~1(1).
» Compute i such that x; = 0 and y; = 1.
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Karchmer-Wigderson game
» Alice gets x € f~1(0), Bobgets y € f~1(1).
» Compute i such that x; = 0 and y; = 1.

> (Real) protocol of communication ¢ = (real) monotone circuit of size 2¢

Real communication strictly more powerful than deterministic:
Can solve EQ with O(1) real communication, but need ()(n) deterministic.
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Communication Complexity

Karchmer-Wigderson game
» Alice gets x € f~1(0), Bobgets y € f~1(1).
» Compute i such that x; = 0 and y; = 1.

> (Real) protocol of communication ¢ = (real) monotone circuit of size 2¢

Real communication strictly more powerful than deterministic:
Can solve EQ with O(1) real communication, but need ()(n) deterministic.

Natural candidate: threshold. f(x) = [hw(x) > n/2].
It is a slice function and has monotone circuits of size O(nlogn).
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Background Length

Space

Communication Complexity

Karchmer-Wigderson game
» Alice gets x € f~1(0), Bobgets y € f~1(1).
» Compute i such that x; = 0 and y; = 1.

> (Real) protocol of communication ¢ = (real) monotone circuit of size 2¢

Real communication strictly more powerful than deterministic:
Can solve EQ with O(1) real communication, but need ()(n) deterministic.

Natural candidate: threshold. f(x) = [hw(x) > n/2].
It is a slice function and has monotone circuits of size O(nlogn).

Another candidate: composition. f o g, where g is threshold.
Does it inherit the query complexity properties of f?
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N
Take Home

Size of coefficients in cutting planes poorly understood

Thanks!
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