Cumulative Space in Black-White Pebbling and Resolution

Marc Vinyals

KTH Royal Institute of Technology
Stockholm, Sweden
joint work with Joël Alwen (IST Austria),
Susanna F. de Rezende (KTH), and Jakob Nordström (KTH)

8th Innovations in Theoretical Computer Science

What is space?

What is space?

time

What is space?

What is space?

Usually: maximal space.

What is space?

Usually: maximal space.
[Alwen, Serbinenko '15]: aggregate space over computation (cumulative space).

Resolution

Setup

Prove CNF formula unsatisfiable.
Present proof on board.

- Write down axiom clauses
- Infer new clauses
$C \vee x \quad D \vee \bar{x}$
$C \vee D$
- Erase clauses to save space

$$
F=\{x, \bar{x} \vee y, \bar{y}\}
$$

Goal: derive empty clause \perp

Resolution

Setup

Prove CNF formula unsatisfiable.
Present proof on board.

- Write down axiom clauses
- Infer new clauses
$C \vee x \quad D \vee \bar{x}$
$C \vee D$
- Erase clauses to save space

Goal: derive empty clause \perp

$$
F=\{x, \bar{x} \vee y, \bar{y}\}
$$

Resolution

Setup

Prove CNF formula unsatisfiable.
Present proof on board.

- Write down axiom clauses
- Infer new clauses
$C \vee x \quad D \vee \bar{x}$
$C \vee D$
- Erase clauses to save space

Goal: derive empty clause \perp

$$
F=\{x, \bar{x} \vee y, \bar{y}\}
$$

Resolution

Setup
Prove CNF formula unsatisfiable.
Present proof on board.

- Write down axiom clauses
- Infer new clauses
$C \vee x \quad D \vee \bar{x}$
$C \vee D$
- Erase clauses to save space

Goal: derive empty clause \perp

$$
F=\{x, \bar{x} \vee y, \bar{y}\}
$$

Resolution

Setup
Prove CNF formula unsatisfiable.
Present proof on board.

- Write down axiom clauses
- Infer new clauses
$C \vee x \quad D \vee \bar{x}$
$C \vee D$
- Erase clauses to save space

$$
F=\{x, \bar{x} \vee y, \bar{y}\}
$$

Goal: derive empty clause \perp

Resolution

Setup
Prove CNF formula unsatisfiable.
Present proof on board.

- Write down axiom clauses
- Infer new clauses
$C \vee x \quad D \vee \bar{x}$
$C \vee D$
- Erase clauses to save space

$$
F=\{x, \bar{x} \vee y, \bar{y}\}
$$

Goal: derive empty clause \perp

Resolution

Setup

Prove CNF formula unsatisfiable.
Present proof on board.

- Write down axiom clauses
- Infer new clauses
$C \vee x \quad D \vee \bar{x}$
$C \vee D$
- Erase clauses to save space

Goal: derive empty clause \perp

$$
F=\{x, \bar{x} \vee y, \bar{y}\}
$$

Resolution

Setup

Prove CNF formula unsatisfiable.
Present proof on board.

- Write down axiom clauses
- Infer new clauses
$C \vee x \quad D \vee \bar{x}$
$C \vee D$
- Erase clauses to save space

Goal: derive empty clause \perp

$$
F=\{x, \bar{x} \vee y, \bar{y}\}
$$

Resolution

Setup

Prove CNF formula unsatisfiable.
Present proof on board.

- Write down axiom clauses
- Infer new clauses
$C \vee x \quad D \vee \bar{x}$ $C \vee D$
- Erase clauses to save space

$$
F=\{x, \bar{x} \vee y, \bar{y}\}
$$

Goal: derive empty clause \perp

Questions

- How much time will this take? (Length)
- How large is the blackboard? (Space)

Space

[Esteban, Torán '99]
[Alekhnovich, Ben Sasson, Razborov, Wigderson '00]

x	x	x	χ	$\bar{x} \vee y$	y	y
	$\bar{x} \vee y$	$\bar{x} \vee y$	$\bar{x} \vee y$	y	\bar{y}	\bar{y}
y	y			\perp		

$$
\left|\mathrm{C}_{1}\right|=1\left|\mathrm{C}_{2}\right|=2\left|\mathrm{C}_{3}\right|=3\left|\mathrm{C}_{4}\right|=2\left|\mathrm{C}_{5}\right|=1\left|\mathrm{C}_{6}\right|=2\left|\mathrm{C}_{7}\right|=3
$$

Space of a proof: $\operatorname{Sp}(\pi):=\max _{t} \mid$ Clauses in $\mathrm{C}_{t} \mid=3$ Space of refuting a formula: $\operatorname{Sp}(F \vdash \perp):=\min _{\pi: F \vdash \perp} \operatorname{Sp}(\pi) \leq 3$

Space

[Esteban, Torán '99]
[Alekhnovich, Ben Sasson, Razborov, Wigderson '00]

x	x	x	χ	$\bar{x} \vee y$	y	y
	$\bar{x} \vee y$	$\bar{x} \vee y$	$\bar{x} \vee y$	y	\bar{y}	\bar{y}
y	y			\perp		

$$
\left|\mathrm{C}_{1}\right|=1\left|\mathrm{C}_{2}\right|=2\left|\mathrm{C}_{3}\right|=3\left|\mathrm{C}_{4}\right|=2\left|\mathrm{C}_{5}\right|=1\left|\mathrm{C}_{6}\right|=2\left|\mathrm{C}_{7}\right|=3
$$

Space of a proof: $\operatorname{Sp}(\pi):=\max _{t} \mid$ Clauses in $\mathrm{C}_{t} \mid=3$ Space of refuting a formula: $\operatorname{Sp}(F \vdash \perp):=\min _{\pi: F \vdash \perp} \operatorname{Sp}(\pi) \leq 3$

Alternative measures: \# literals, \# bits

Space

Bounds

Every formula $\mathrm{Sp}=\mathrm{O}(n)$
Exist formulas st $\mathrm{Sp}=\Omega(n)$
[Esteban, Torán '99], [Alekhnovich, Ben Sasson, Razborov, Wigderson '00]

Space

Bounds

Every formula $\mathrm{Sp}=\mathrm{O}(n)$
Exist formulas st $\mathrm{Sp}=\Omega(n)$
[Esteban, Torán '99], [Alekhnovich, Ben Sasson, Razborov, Wigderson '00]

Space vs length
Exist formulas st

- Exists proof with $\mathrm{Sp}=\mathrm{O}\left(n^{1 / 11}\right)$
- Exists proof with Len $=\mathrm{O}(n)$
- Every proof with $\mathrm{Sp}<n^{2 / 11}$ requires Len $=\exp n^{\Omega(1)}$
[Ben Sasson, Nordström '11]

Cumulative Space

Aggregate space over whole proof.

x	x	x	χ	$\bar{x} \vee y$	y	y
	$\bar{x} \vee y$	$\bar{x} \vee y$ y	$\bar{x} \vee y$ y	y	\bar{y}	\bar{y}
\perp						

$$
\left|\mathbb{C}_{1}\right|=1\left|\mathbb{C}_{2}\right|=2\left|\mathbb{C}_{3}\right|=3\left|\mathbb{C}_{4}\right|=2\left|\mathbb{C}_{5}\right|=1\left|\mathbb{C}_{6}\right|=2\left|\mathbb{C}_{7}\right|=3
$$

Cumulative space of a proof: $\operatorname{CumSp}(\pi):=\sum_{t} \mid$ Clauses in $\mathbb{C}_{t} \mid=14$ Cumulative space of refuting a formula:
$\operatorname{CumSp}(F \vdash \perp):=\min _{\pi: F \vdash \perp} \operatorname{CumSp}(\pi) \leq 14$

Cumulative Space

Observations

Every proof CumSp \leq Len \cdot Sp Every formula Len $\leq 2^{n}$ and $\mathrm{Sp} \leq n$
$\Rightarrow \mathrm{CumSp} \leq n 2^{n}$

Cumulative Space

Observations

Every proof CumSp \leq Len \cdot Sp
Every formula Len $\leq 2^{n}$ and $\mathrm{Sp} \leq n$
$\Rightarrow \mathrm{CumSp} \leq n 2^{n}$

Every formula CumSp \geq Len
\Rightarrow Most interesting if Len $=\mathrm{O}(n)$.

Cumulative Space

Observations
Every proof CumSp \leq Len \cdot Sp
Every formula Len $\leq 2^{n}$ and $\mathrm{Sp} \leq n$ $\Rightarrow \mathrm{CumSp} \leq n 2^{n}$

Every formula CumSp \geq Len \Rightarrow Most interesting if Len $=\mathrm{O}(n)$.

Every formula CumSp \leq Len 2.

Cumulative Space

Observations

Every proof CumSp \leq Len \cdot Sp
Every formula Len $\leq 2^{n}$ and $\mathrm{Sp} \leq n$
$\Rightarrow \mathrm{CumSp} \leq n 2^{n}$

Every formula CumSp \geq Len
\Rightarrow Most interesting if Len $=\mathrm{O}(n)$.
Every formula CumSp \leq Len 2.

Reaching space s needs $s / 2$ configurations of space $\geq s / 2$
\Rightarrow Cumulative space $\Omega\left(s^{2}\right)$.

Cumulative Space Bounds

How large can cumulative space be?

Every formula CumSp $=\mathrm{O}\left(\mathrm{Len}^{2}\right)$. Is this tight?

Cumulative Space Bounds

How large can cumulative space be?

Every formula CumSp $=\mathrm{O}\left(\mathrm{Len}^{2}\right)$. Is this tight?

Maximal space: $\mathrm{Sp}=\mathrm{O}$ (Len) not tight. Every formula $\mathrm{Sp}=\mathrm{O}($ Len $/ \log$ Len $)$. [Hopcroft, Paul, Valiant '75]

Cumulative Space Bounds

How large can cumulative space be?

Every formula CumSp $=\mathrm{O}\left(\mathrm{Len}^{2}\right)$. Is this tight?

Maximal space: $\mathrm{Sp}=\mathrm{O}$ (Len) not tight.
Every formula $\mathrm{Sp}=\mathrm{O}($ Len $/ \log$ Len $)$. [Hopcroft, Paul, Valiant '75]

Theorem

Exist formulas with Len $=\mathrm{O}(n)$ and CumSp $=\Omega\left(n^{2}\right)$.

Maximal vs Cumulative Space

Large space \Leftrightarrow large cumulative space?
$\Rightarrow \quad$ Yes
Every formula CumSp $=\Omega\left(\mathrm{Sp}^{2}\right)$.

Maximal vs Cumulative Space

Large space \Leftrightarrow large cumulative space?
\Rightarrow Yes
Every formula CumSp $=\Omega\left(\mathrm{Sp}^{2}\right)$.
\Leftarrow No
Theorem
Exist formulas with $\mathrm{Sp}=\mathrm{O}(\log n)$ but $\mathrm{CumSp}=\Omega\left(n^{2} / \log n\right)$

Length vs Cumulative Space

How often do we need maximum space in a trade-off?

Theorem [Ben Sasson, Nordström '11]
Exist formulas st for any $s=\mathrm{O}(\sqrt{n})$

- Exists proof with $\mathrm{Sp}=\mathrm{O}(s)$ and $\mathrm{Len}=\mathrm{O}\left(n^{2} / s^{2}\right)$
- Exists proof with $\mathrm{Sp}=\mathrm{O}(1)$
- Exists proof with Len $=\mathrm{O}(n)$
- Every proof in space $\mathrm{O}(s)$ needs Len $=\Omega\left(n^{2} / s^{2}\right)$

Length vs Cumulative Space

How often do we need maximum space in a trade-off?

Theorem [Ben Sasson, Nordström '11]
Exist formulas st for any $s=\mathrm{O}(\sqrt{n})$

- Exists proof with $\mathrm{Sp}=\mathrm{O}(s)$ and Len $=\mathrm{O}\left(n^{2} / s^{2}\right)$
- Exists proof with $\mathrm{Sp}=\mathrm{O}(1)$
- Exists proof with Len $=\mathrm{O}(n)$
- Every proof in space $\mathrm{O}(s)$ needs Len $\cdot \mathrm{Sp}=\Omega\left(n^{2} / s\right)$

Length vs Cumulative Space

How often do we need maximum space in a trade-off?

Theorem

Exist formulas st for any $s=\mathrm{O}(\sqrt{n})$

- Exists proof with $\mathrm{Sp}=\mathrm{O}(s)$ and Len $=\mathrm{O}\left(n^{2} / s^{2}\right)$
- Exists proof with $\mathrm{Sp}=\mathrm{O}(1)$
- Exists proof with Len $=\mathrm{O}(n)$
- Every proof in space $\mathrm{O}(s)$ needs $\mathrm{CumSp}=\Omega\left(n^{2} / s\right)$

Corollary

- Every proof in space $\mathrm{O}(s)$ and length $\mathrm{O}\left(n^{2} / s^{2}\right)$ needs $\Omega\left(n^{2} / s^{2}\right)$ configurations with space $\Omega(s)$

Parallel Resolution

Parallel resolution: allow many steps at once.
Automatic CumSp $=\Omega\left(\mathrm{Sp}^{2}\right)$ lower bound no longer holds.

Parallel Resolution

Parallel resolution: allow many steps at once.
Automatic CumSp $=\Omega\left(\mathrm{Sp}^{2}\right)$ lower bound no longer holds.

Parallel Inference

Previous results hold even allowing parallel inference.

Parallel Resolution

Parallel resolution: allow many steps at once.
Automatic CumSp $=\Omega\left(\mathrm{Sp}^{2}\right)$ lower bound no longer holds.

Parallel Inference

Previous results hold even allowing parallel inference.

Fully Parallel Resolution
Very powerful model: can prove any formula in 2 steps. Lower bounds with limited space.

Techniques

Pebble games

- Simple computational model to measure space.
- Prove lower bounds in pebble game
- Translate to resolution

Techniques

Pebble games

- Simple computational model to measure space.
- Prove lower bounds in pebble game
- Translate to resolution

Lemma

Resolution proof of $F(G)$ in length L, space s, cumulative space c. Then pebbling of G in time L, space s, cumulative space c.

Even if parallel inference steps.

Techniques

Pebble games

- Simple computational model to measure space.
- Prove lower bounds in pebble game
- Translate to resolution

Lemma

Resolution proof of $F(G)$ in length L, space s, cumulative space c. Then pebbling of G in time L, space s, cumulative space c.

Even if parallel inference steps.

- [Alwen, Serbinenko '15]: Translate computation to black pebbling strategy.
- Proofs are non-deterministic: translate proof to black-white pebbling.

Take Home

Recap

- Introduced cumulative space measure in proof complexity.

Open problems

- Study cumulative space in other areas.

Take Home

Recap

- Introduced cumulative space measure in proof complexity.

Open problems

- Study cumulative space in other areas.

Thanks!

