Towards an Understanding of Polynomial Calculus:
New Separations and Lower Bounds
Yuval Filmus (UofT), Massimo Lauria, Mladen Mikša, Jakob Nordström, Marc Vinyals (KTH)
To appear at ICALP'13Image: Colspan="2">ICALP'13Mefuting CNF formulasProof: sequence of whiteboards

Interesting measures: Size: $\approx \#$ boards Space: \approx Largest board

Resolution

Lines are clauses, e.g. $x \lor y \lor \overline{z}$, inference rules are:

$$\begin{array}{ccc} C \lor x & D \lor \bar{x} \\ \hline C \lor D \end{array}$$

Size = # clauses, space = # clauses on largest board Auxiliary measure: width = size of largest clause

Polynomial Calculus (PC)

Lines are polynomials, e.g. $x\bar{y} + 2z$, roots denote truth, inference rules are: $p \qquad q \qquad p$

$$\frac{1}{\alpha p + \beta q} , \frac{p}{xp}$$

Size = # monomials, space = # monomials on largest board Auxiliary measure: degree of largest monomial

Previous results

Resolution	PC
Large width \iff Large size	$Large \ degree \ \Longleftrightarrow \ Large \ size$
Large width \implies Large space	???
Small width \implies Small space	???

XOR substitution

 $C[\oplus] = x_1 \lor x_2 \lor \overline{y}_1 \lor y_2$ $\land \quad \overline{x}_1 \lor \overline{x}_2 \lor \overline{y}_1 \lor y_2$ $\land \quad x_1 \lor x_2 \lor y_1 \lor \overline{y}_2$ $\land \quad \overline{x}_1 \lor \overline{x}_2 \lor y_1 \lor \overline{y}_2$

Ingredients

Space framework

PC space lower bounds from combinatorial game Introduced by [Bonacina & Galesi '13] Implies all space results known to date But fails to prove some believable results

Open: characterize space?

Tseitin Formulas

Variables are edges Odd parity at each vertex Falsify the even handshakes principle: Sum of edge parities even XOR substitution same as double edges $Ts(G) = x \lor y \land \overline{x} \lor \overline{y}$ $\land y \lor z \land \overline{y} \lor \overline{z}$ $\land x \lor z \land \overline{x} \lor \overline{z}$

Our results: relating PC space and degree

Large width
$$\implies$$
 Large space of $F[\oplus]$

PC space of refuting $F[\oplus] \gtrsim$ Resolution width of refuting FNot quite Large degree \implies Large space **Stronger** because Large degree \implies Large width **Weaker** because XOR substitution changes F a lot

Open: Large degree $\stackrel{?}{\Longrightarrow}$ Large space of F

Small degree \implies Small space

G expander graph with double copies of each edge Then Tseitin formula Ts(G) has: PC **degree**: constant (minimum) PC **space**: linear (maximum)

Open: tight bound for non-multigraphs?

 ${\mathcal Z}$

G

 \mathcal{X}

Funding by the European Union's Seventh Framework Programme grant agreements no. 238381 and 279611, and Swedish Research Council grants 621-2010-4797 and 621-2012-5645.