Towards an Understanding of Polynomial Calculus: New Separations and Lower Bounds
 Yuval Filmus (UofT), Massimo Lauria, Mladen Mikša, Jakob Nordström, Marc Vinyals (KTH) To appear at ICALP'13
 ETH

 Royal institute of technology

Refuting CNF formulas
Proof: sequence of whiteboards

Interesting measures:
Size: $\quad \approx$ b boards
Space: \approx Largest board

Resolution

Lines are clauses, e.g. $x \vee y \vee \bar{z}$, inference rules are:

$$
\frac{C \vee x \quad D \vee \bar{x}}{C \vee D}
$$

Size $=\#$ clauses, space $=\#$ clauses on largest board
Auxiliary measure: width $=$ size of largest clause

Polynomial Calculus (PC)
Lines are polynomials, e.g. $x \bar{y}+2 z$, roots denote truth, inference rules are:

$$
\frac{p \quad q}{\alpha p+\beta q}, \frac{p}{x p}
$$

Size $=\#$ monomials, space $=\#$ monomials on largest board Auxiliary measure: degree of largest monomial

Previous results

Resolution	PC	
Large width \Longleftrightarrow Large size	Large degree \Longleftrightarrow Large size	
Large width \Longrightarrow Large space	???	
Small width \nRightarrow Small space	$? ? ?$	

XOR substitution

Ingredients

Space framework

PC space lower bounds from combinatorial game
Introduced by [Bonacina \& Galesi '13]
Implies all space results known to date
But fails to prove some believable results

Tseitin Formulas

Variables are edges
Odd parity at each vertex
Falsify the even handshakes principle:
Sum of edge parities even
XOR substitution same as double edges

Open: characterize space?

Our results: relating PC space and degree

Large width \Longrightarrow Large space of $F[\oplus]$

PC space of refuting $F[\oplus] \gtrsim$ Resolution width of refuting F
Not quite Large degree \Longrightarrow Large space
Stronger because Large degree \Longrightarrow Large width
Weaker because XOR substitution changes F a lot
Open: Large degree $\stackrel{?}{\Longrightarrow}$ Large space of F

Small degree \square Small space

G expander graph with double copies of each edge

Then Tseitin formula $\mathrm{Ts}(G)$ has:
PC degree: constant (minimum)
PC space: linear (maximum)
Open: tight bound for non-multigraphs?

