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Abstract

The CDCL algorithm for SAT is equivalent to the resolution proof system under a few
assumptions, one of them being an optimal non-deterministic procedure for choosing the next
variable to branch on. In practice this task is left to a variable decision heuristic, and since the
so-called VSIDS decision heuristic is considered an integral part of CDCL, whether CDCL with a
VSIDS-like heuristic is also equivalent to resolution remained a significant open question.

We give a negative answer by building a family of formulas that have resolution proofs of
polynomial size but require exponential time to decide in CDCL with common heuristics such as
VMTF, CHB, and certain implementations of VSIDS and LRB.

1 Introduction

Conflict-Driven Clause Learning (CDCL) is nowadays the top-performing algorithm to solve SAT in
practice. When a CDCL solver finds a formula to be unsatisfiable, a proof of this fact can be read from
its execution trace, and that proof can be formalized in the resolution proof system [BKS04]. It is not
obvious whether all resolution proofs can be obtained using a CDCL solver; for instance, the preceding
DPLL algorithm is restricted to producing tree-like resolution proofs, which are exponentially weaker
than general resolution [Goe93, Urq95, BEGJ0O0].

Progress towards this question was made showing that tweaked versions of CDCL polynomially
simulate resolution—in other words, the algorithm can produce proofs that are only polynomially
worse than the optimal resolution proof—either allowing the solver to not resolve conflicts imme-
diately [BKS04] or making an additional pre-processing step [HBPV08]. The question was largely
settled by Pipatsrisawat and Darwiche [PD11], who showed that under a few assumptions CDCL
polynomially simulates resolution.

Naturally there has been work towards understanding which assumptions are needed; to explain
them we have to sketch how the CDCL algorithm works. Similarly to DPLL, the algorithm assigns
values to variables, either by choice or forced by a clause, until either a solution or a conflict is found.
Upon reaching a conflict DPLL backtracks and makes the last choice forced to its opposite. CDCL
also backtracks, but analyses the conflict to learn a new clause that precludes the same conflict—and
potentially many others—from occurring again. Since part of the state is kept in the learned clauses
it makes sense to occasionally restart the search, and for memory management reasons to forget
some of the clauses.

A first, mild assumption is that the solver restarts often enough. This is a reasonable assumption
to make since solvers do restart frequently in practice, but it is still interesting to study what would
be the case without restarts, if only to understand the power of restarts. The pool resolution
subsystem [Van05] captures proofs produced by solvers that do not restart, and a few candidates for
a separation between pool and general resolution were proposed but all turned out to have short
pool resolution proofs [BBJ14, BK14]. Long story short, we still do not know if restarts are needed.

Another assumption is that the solver never forgets a clause. This is an unrealistic assumption
to make since in practice solvers do throw out many of the clauses they learn. A much weaker



assumption is needed, in that solvers need to keep at least a few selected clauses in order to produce
optimal proofs [EJL*16], but there is a large stretch between having to keep a few selected clauses
and all clauses, and we do not know where in this line the truth lies.

The last assumption we consider is that when the solver chooses which literal to branch on, it
makes optimal non-deterministic choices—that is, with external oracle advice. Of course this is not
at all what happens in practice, in fact furnishing CDCL with a conflict-based decision heuristic is
considered crucial for CDCL to work well if not an inextricable part of CDCL [MSLM09, KSM11, BF15],
hence we cannot close the question whether CDCL polynomially simulates resolution unless we allow
a heuristic that is closer to practice.

For instance, we can relax the non-deterministic assumption to making frequent enough random
choices and obtain a weaker conclusion. In this case, and still using the first two assumptions,
CDCL can simulate bounded-width resolution [AFT11]. At the same time, it is most likely that an
assumption along these lines is needed, since a recent result shows that no deterministic algorithm
can polynomially simulate resolution unless P = NP [AM19].

1.1  Our Results

In this work we look into this last assumption, non-deterministic branching, and we prove unconditionally—
without depending on whether P = NP—that if the CDCL algorithm uses conflict-based heuristics,
then it cannot polynomially simulate resolution. This answers in the negative a question of Miksa
and Nordstrom [MN14], who ask whether CDCL with VSIDS, 1UIP, and phase saving polynomially
simulates resolution.

Theorem 1.1 (Informal). There exists a family of formulas that have polynomial-size resolution proofs
but CDCL with conflict-based decision heuristics runs in exponential time.

We explain exactly what we mean with conflict-based in Sections 2.3 and 3, and for now we just say
that the decision heuristics we look into all have in common that they select variables that have been
recently involved in generating conflicts. These include VMTF, CHB, and certain implementations of
VSIDS and LRB.

We do not need to make assumptions on the remaining parts of the algorithm, but it is worth
mentioning a caveat that applies to which decision heuristics our result applies to. For technical
reasons in some heuristics we need to impose that variable scores are stored either with arbitrary
precision or in a stable data structure. We opt for the latter choice since, as we argue in Section 2.4, it
is a plausible condition that does not make much difference in practice.

In addition to proving a theoretical result, we run experiments on the formulas we craft. The
experiments confirm our theoretical findings, that is the formulas are very hard for SAT solvers that
employ the heuristics we discuss, but trivial if we specify a static variable order. Even more, for
certain parameter ranges it is more effective to make many decisions at random.

1.2 Related Work

We know of other branching heuristics that are not enough to simulate resolution, for instance in the
context of encoding constraints into CNF a branching heuristic that only picks input variables (that is
variables from the problem domain, as opposed to auxiliary variables introduced during translation
to CNF) is exponentially weaker than full CDCL [JJ09]. However, our work is the first to expose the
theoretical limits of conflict-based heuristics.

By no means we are the first to observe that there are formulas where VSIDS performs badly or that
making random decisions can be helpful—in fact the appendix to the MiniSat solver description [ES04]
discusses random decisions, and one may find plenty of concrete examples where a static variable
order drastically outperforms VSIDS in the thorough evaluation of Elffers et al. [EGG™18].



1.3 Techniques

To prove our result we design a formula with the explicit purpose of tricking decision heuristics.
Our formula consists essentially of an easy part that has polynomial-length proofs, a hard part that
requires exponential-length proofs, and a set of pitfall gadgets that trick the solver into exploring the
hard part before the easy part. Coming up with robust gadgets is a significant part of the work.

Proving an upper bound on resolution length is straightforward, but proving a lower bound on
CDCL time becomes a delicate task. To do so we mix a low-level step-by-step simulation with a
high-level proof-complexity argument. The simulation is an ad-hoc argument where we run the
algorithm for a few steps, carefully controlling the state of the solver, until we reach a state where the
solver is restricted to working on a reduced set of variables. Then we use a black-box proof-complexity
result to show that any proof of the restricted formula must be of exponential size.

2 Preliminaries

2.1 Proof Complexity

A resolution refutation of a CNF formula F is a sequence of disjunctive clauses Cy,..., Cy such that
every clause C, either belongs to F or it can be obtained by applying the resolution rule
CVx DVXx
CVD @
with CVx =C;, DVX =Cj, and i,j < t. The length of a refutation is T, the number of clauses in
the refutation.

The restriction of a clause C by a truth value assignment p is C[, = V ec (D). The restriction of
a set of clauses is the result of restricting each individual clause and eliminating tautologies. If 7 is a
resolution refutation of F, then 7|, is a valid resolution refutation of F[,.

The Tseitin formula of a graph G(V, E) and a charge function y: V — {0,1} is a CNF with one
variable per edge and the set of constraints LI(G, y) = /\veV Parity(v) where Parity(v) is the CNF
encoding @, x, = y(v). A Tseitin formula is unsatisfiable if and only if > ., x(v) is odd, which
we assume from now on. Tseitin formulas are hard to prove within the resolution proof system.

Theorem 2.1 ([Urq871). There is a family of graphs on n vertices and constant degree such that 1I(G, y)
requires resolution proofs of length exp((n)).

2.2 The CDCL Algorithm

We follow the description of CDCL of Elffers et al. [EJL*16]. The input is a CNF formula F. The state
is formed by the trail (o), which is a sequence of assignments, and the clause database D, which is
a set of clauses. Initially (o) = @ and D = F. The algorithm runs in a loop and the action to take
at each step depends on D[,. If the empty clause L is in D[, then we say there is a conflict. If
we can resolve it then we learn a clause and add it to D, otherwise the formula is unsatisfiable. If
there is a unit clause x® € DI, then we propagate its value by appending x = b to (p). Otherwise
we say that we are in a stable state. In this case we might forget a few clauses and use a reduced
database D’ C D, we might restart the search by resetting the trail to (o) = @ but keeping the learned
clauses, or we decide the value of some unassigned variable by appending x = b to the trail, unless
all variables are assigned in which case we found a satisfying assignment.

In order to fully determine the CDCL algorithm we need to specify its learn, propagate, forget,
restart, and decide components. We assume about the learning component that any learned clause
can be derived from the conflict clause and unit-propagating clauses [BKS04] but nothing more.
The clauses used in such derivation are said to participate in a conflict, and so are all the variables
contained in clauses that participate in a conflict.



Algorithm 1: CDCL
1 while not solved do
if conflict then learn()
else if unit then propagate()
else
maybe forget()
maybe restart()
7 decide()
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Lemma 2.2 ([BKS04]). If a formula F over n variables is found unsatisfiable by a CDCL solver in
T conflicts, then there is a resolution refutation of F of length at most n - T using only conflict and
unit-propagating clauses.

We do not make any assumptions about which variable is propagated first when multiple choices
are possible, nor about which clauses are forgotten, nor when to restart the search, and we discuss
branching heuristics next.

2.3 Branching Heuristics

In the heuristics we consider the decision of which literal to branch on is actually taken by running
two procedures, first a variable decision heuristic, or decision heuristic for short, and then a phase
decision heuristic. We assume that the phase is chosen according to the phase-saving heuristic, that
is with the same sign as the last time that the selected variable was last assigned. If a variable has
never been assigned, we assume that it is first assigned to O.

The variable decision heuristics we consider all assign a score q to each variable, which is updated
as the search progresses, and at the time to make a decision they choose the variable with the largest
score. Tie-breaking is often considered an implementation detail.

We consider the top performing decision heuristics evaluated by Biere and Frohlich [BF15], and
in addition two later heuristics that outperform VSIDS on certain benchmarks [LGPC16a, LGPC16b].

In VSIDS [MMZ*01, ES04] the score of a variable is bumped each time it participates in a
conflict and decays at every conflict. More formally, the score of variable x after conflict ¢ is
q(x,t) =b(x,t)+ 6 -q(x,t —1), where 0 < § < 1 is the decay factor and b(x,t) € {0,1} is 1 if x
participated in the conflict! The decay factor can be a constant or change over time.

In VMTF [Rya04] the score is q(x, t) = t if x participated in the conflict? and q(x, t —1) otherwise.
The relative order among tied variables is preserved.

In ACIDS [BF15] the score is (t + q(x,t))/2 if x participated in the conflict and g(x,t — 1)
otherwise.

In CHB [LGPC16a] the score is updated after every set of propagations leading to a stable state or
conflict s, but only for variables added to the trail since state s —1; the rest is not modified. If variable
x is updated at state s, then q(x,s) =a-r(x,s)+(1—a)-q(x,s —1). r(x,s) = u(s)/A(x,s), where
u(s) = 1 if we reached a conflict and 0.9 otherwise, and A(x,s) is the number of conflicts since x last
participated in a conflict. The MapleSAT implementation of CHB has a decreasing after each conflict.

In LRB [LGPC16b] the score is updated after each conflict or restart, but only for variables getting
unassigned. We have q(x,s) defined as in CHB, but r(x,s) = P(x,s)/I(x,s), where P(x,s) is the
number of times x participated in a conflict or belonged to a clause that propagated a literal found

1The original Chaff implementation has a score for each literal, a literal is bumped if it belongs to the learned clause,
and decays and reordering happen once every 256 conflicts.
2The original Siege implementation only bumps variables in the learned clause.



in the learned clause, and I(x,s) is the number of conflicts, all of these measured since x was last
assigned. We also decay the score of all variables by a factor 6 after each conflict.

2.4 Implementation Details
2.4.1 Precision

If we expand the definition of VSIDS we get that gq(x,t) = Zl.t:l 5ib(x,1). However, since in
practice we keep the scores using floating point numbers, it is more accurate for our model to drop
the tail of the sum. In other words we only need to account for the last K conflicts, where K is such

that
t—K

. 5K _ 5t 51(

o = < <e 2
; 1-96 1-96 @)
with € being the minimum number that can be represented with a particular floating point type. If
we have e bits of exponent, this means

S log(e(1—0)) —2°+log(1—45)
log(5) B log(5)

To put this in numbers, MiniSat uses e = 10 and & = 0.95, hence only about the last 14000 conflicts
matter.

Asymptotically, if we make the assumption that to solve a problem of size n we use data types of
size ©(logn) in bits, then we have ©(logn) bits of floating point exponent, which gives a value for K
of 20008™) — n®() that is only a polynomial number of recent conflicts matter.

In our analysis we need to distinguish variables that participated in a conflict up to exponentially
many conflicts ago from variables that did not participate in a conflict at all, but as we just discussed
their scores will be both indistinguishable from 0. Therefore we need to pay attention to tie-breaking.
Ultimately which variable gets decided among variables of equal score depends on which data
structure is used to implement the priority queue of unassigned variables, hence we consider two
kinds of data structures depending on whether they preserve the preexisting order.

A stable priority queue—and, by extension, a stable decision heuristic—has the property that if
at a state s we have q(x,s) > q(y,s) and for every state s’ > s we have q(x,s’) > q(y,s’), then x is
dequeued before y. An example of a stable priority queue is a radix heap [BF15], while an example
of an unstable priority queue is the binary heap used in MiniSat. The split queue present in recent
versions of Lingeling [Biel5] is only stable with respect to zero and near-zero scores, hence for our
purposes we consider it to be stable.

Since in practice the choice of data structure is not particularly consequential [BF15], whenever
we need to we will assume that we use a stable priority queue and make an explicit note of it.

(3)

2.4.2 Initialization

As we mentioned we assume that when deciding a variable that has never been assigned we set its
phase statically to 0. Other ways to choose an initial phase are with the one-sided Jeroslow-Wang
heuristic or at random, but we do not consider those.

Some ways to pick the initial variable order are to use the same static order as the input, the JW
order, or to pick a random order. To make our model more robust we assume the order is random
and prove that our result holds except for an exponentially small fraction of initial orders.

2.5 Preprocessing

Most solvers use preprocessing techniques in an attempt to simplify their inputs before and even
interleaved with the search. While we do not aim to cover all of these techniques, we do not want



our formulas to contain pure literals, unit clauses, or similar artefacts that can be easily removed.
Therefore we look into the following simple preprocessing rules.

. Self—sub_suming resolution [EBO5]. If we have clauses C VI and D VT, and C C D, then we
remove [ from D.

* Bounded variable elimination [EBO5]. Resolve all clauses containing x with all clauses
containing x. If the resulting set is not larger, replace the original set.

* Failed literal elimination [LBO1]. If setting a literal [ unit propagates a conflict, add the unit
clause [.

* Blocked clause elimination [JBH10]. If a clause contains a literal [ such that resolving C with
all clauses containing [ only yields tautologies, then we remove C.

3 Separation for Conflict-Rewarding Heuristics

The key property that we use from the decision heuristics we study is that they give priority to
variables participating in conflicts.

Definition 3.1. We say that a decision heuristic rewards conflicts if a variable that has participated in
a conlflict is always selected before a variable that has never been assigned.

To prove that concrete heuristics reward conflicts we assume that on a problem of size n the
solver uses a floating point type with ©(logn) bits of exponent and runs for exp(O(n)) many steps.

Lemma 3.2. Stable VSIDS, VMTF, ACIDS, CHB, and Stable LRB reward conflicts.

Proof. Let x be a variable that participated in conflict ¢, and y a variable that has never been assigned.
All heuristics we consider satisfy q(x,s) = 0 and q(y,s) = O for all states s, hence for stable decision
heuristics it is enough to show that g(x, t) > 0, while for the rest we have to show that q(x,s) > 0 for
all states s > t.

It is immediate from the definitions that for stable VSIDS we have q(x, t) > 1, and for VMTF and
ACIDS we have g(x,s) > q(x,t) =t.

For CHB we have g(x,s) > au/A(x,s) > 1/(20s) for all s > t, and since s = exp(O(n)), a
floating-point representation can distinguish 1/(20s) from 0.

Finally, for stable LRB, even if we cannot guarantee that g(x, t) > 0, we only need to prove that x
is selected before y when both choices are available, and as soon as we reach a state s > t where x is
unassigned the score of x is updated to q(x,s) = a/t > 1/(20t). O

To exploit this property we craft a formula with an easy part and a hard part, but such that setting
variables from the easy part makes the solver find a conflict involving all variables from the hard part.

The formula has 5 types of variables, each type subdivided into k blocks: X = J jex X with
|X;| = m are hard variables, Y = Ujek Y; with |Y;] = n are easy variables, and P = Ujek P, with
|Pjl=m+n, Z= Ujek Z; with |Z;| =n, and A= UjekAj with |A;| = 3 are auxiliary variables. This
makes a total of k(2m + 3n + 3) variables. We think of k as a constant and assume that m = ©(n).

Next we describe a few gadgets out of which we build the formula. The hard gadget consists of a
padded formula, that is given a formula F and a clause C, the padded formula FVC is {DVC | D € F}.

A pitfall gadget W(y1,y) is is the CNF y1 V yo VD1, Y1 VY2 VDi2 -+ Y1V Y2V Djmen, Where j
is the block index of both y; and y,. We call y; and y, the trap variables. The goal of a pitfall gadget
is to deviate the solver’s attention from Y variables towards X variables via P variables: observe that
setting y; = 0, y, = 0 leads to a parallel propagation of P;.



Apipe gadget TI(y) is the CNF yV\/,; ;i VX 1, YVV 120D VX1 VX 2, -5 YV i Py i VX 1V
VG YV V i1 Pi VXV VX VB 1, YVV Vi Py VX Vo VX VE o Ve VE
where j is the block index of y. Note that the last clause does not contain z; ;. The goal of a pipe
gadget is to follow-up on a pitfall gadget: setting y and all P; variables to 0 leads to a sequential
propagation of all variables in X; U Z;.

A tail gadget A(y,z)isthe CNFa;;Vaj3Vz,a;,Vaj3Vz, a;;VzVYy,aj,VzVy, where jis
the block index of both y and z. The goal of a tail gadget is to ensure that Z variables do not flip
values: if y =1, then setting z = 1 immediately leads to a conflict.

We denote ¥; = {¥(yy,y2) |y, ¥2) € ()}, I = {TI(y) | y € Y;}, and A} = {A(y,2) | (,2) €
Y; x Z;}.

Definition 3.3. The pitfall formula ®(G, y, n, k) consists of k padded copies of an unsatisfiable Tseitin
formula, IT; = LI(G, y) V \/ziezj z;, k pitfall gadgets ¥;, k pipe gadgets IT;, k tail gadgets A;, and n/2
clauses I; = \/je[k] Yjat V ¥Yj20+1, Which we refer to as easy clauses.

The total number of clauses on a graph of degree d is therefore k - ((2m/d) 2414 (('21) + n) -(m+
n)+4n%+n/ 2). Note that there is nothing special about a Tseitin formula, and we could replace it
with other hard formulas.

We claim that the formula is not affected by the preprocessing rules we described in Section 2.5.

Lemma 3.4. ® is invariant with respect to self-subsuming resolution.

Proof. The support of each gadget is II(X}, Z;), ¥(Y;, P;), 11(Y;, P;, X, Z;), A(Y},Z;,A;), and T(Y).
We only need to worry about self-subsuming resolution from Tseitin and pitfall gadgets to pipe
gadgets, or between the same gadget, since all other gadgets have supports that are incomparable
with respect to set inclusion.

Since Tseitin clauses contain all Z; variables but no pipe clause does, no subsumption occurs
in the first two cases. Pitfall gadgets contain two Y; variables but pipe gadgets only contain one,
covering the second case.

Pairs of Tseitin clauses either have incomparable supports or cannot be resolved, and pairs of
pitfall clauses, pipe clauses, tail clauses, and easy clauses all have incomparable supports respectively,

hence no subsumption occurs in the last case. O
Lemma 3.5. & is invariant with respect to bounded variable elimination.

Proof. For each type of variable we count how many clauses a variable appears in, and how large the
result of eliminating the variable is.

Variable x;; appears in 24 Tseitin clauses, m — i + n times positively in n pipe gadgets, and
once negatively in the same gadgets, which is O(n?) in total. If we resolve clauses C; € IT and
{C/ .1,---,Cy ..} C I for any pair of pipe gadgets we obtain different clauses, hence eliminating
x;; produces Q(n®) clauses.

Variable y;; appears m + n times positively in n —1 pitfall gadgets, m + n times positively in a
pipe gadget, twice negatively in n tail gadgets, and once in an easy clause, or O(n?) in total. If we
resolve clauses from a pitfall gadget and clauses from a tail gadget we obtain different clauses, hence
eliminating y;; produces Q(n3) clauses.

Variable p; ; appears once negatively in (g) pitfall gadgets and n+m —1 times positively in n pipe
gadgets, or O(n?) times in total. If we resolve these clauses we obtain Q(n*) clauses, of which O(n®)
are repeated, therefore Q(n*) are distinct clauses.

Variable z; ; appears once positively in v - 2971 Tseitin clauses, min(n—2,n —i) times positively in
n pipe gadgets, and once negatively in the same gadgets, and 4 times negatively in n tail gadgets, or
n? + O(n) times in total. If we resolve Tseitin clauses and tail clauses we obtain different clauses,
hence eliminating z;, produces v - 24*1 - n > n? clauses.



Variable a;; appears once positively and once negatively in n? tail gadgets. If we resolve the
corresponding clauses for any pair of tail gadgets we obtain different clauses, hence eliminating a; ;
produces n* clauses. O

Lemma 3.6. @ is invariant with respect to failed literal elimination.

Proof. Since ® does not contain any binary clauses, no conflict occurs after assigning only one
literal. =

Lemma 3.7. ® is invariant with respect to blocked clause elimination.

Proof. For each clause C and literal [ we show that there is a clause D containing 1 such that resolving
C and D is not tautological.

Tseitin clauses can be resolved over a variable x;; with the Tseitin clauses corresponding to the
opposite endpoint of edge x;, and over a literal z;; with clauses on a tail gadget.

Pitfall clauses can be resolved over a literal y;; with clauses on a tail gadget, and over a literal
p;j,i with clauses on a pipe gadget.

Pipe clauses can be resolved over a literal y; ; with clauses on a tail gadget, over a literal p; ; with

clauses on a pitfall gadget, and over a literal x;; or z; ; with a pipe clause containing X;; or z; ; and
vice versa, except for the literal z; ,,, which can be resolved with a Tseitin clause where all X variables
appear positively. Such a clause is present in the expansion of Parity(v) with y(v) odd.

Tail clauses can be resolved over a variable a;; with another tail clause, over a literal y; ; with a
pitfall clause, and over a variable z; ; with a Tseitin clause.

Easy clauses can be resolved with pipe clauses. O

Next we move into proving Theorem 1.1. First we show how to build short proofs of pitfall
formulas.

Lemma 3.8. There is a resolution refutation of ®(G, y,n, k) of length 200 4 O(kn?(n +m)).

Proof. For any pair of variables y;,, y; » we can derive the clause y;, V y;, in O(n) steps as follows.

First we derive the clause y;,V pj1V "V pjmin- Let I(y; ) = Cy,..., Cpypn be the clauses of
the corresponding pipe gadget and let D € I]; be a clause that is not satisfied by setting X; = 0, that
isD=xj;, V--+Vxj; Vzj;V--Vz;,. Weresolve D with the pipe clauses in reverse, that is, we
begin with D,,,,,, = D and at each step from i = m +n to 1 we resolve D; with C; to obtain D;_;. Note
that D;_; is the same as C; with the last literal removed and the literal p; ; added, and in particular
Do=Yj¢VYjuVPj1 V- VDjmen-

This allows us to derive the clause y;, V y;, in m + n steps simply by resolving y; ,Vp;; V-V
VDj m+n with all the clauses in the corresponding pitfall gadget.

Using this procedure we can derive the clauses y;, V y; for j € [k] and £, 0) e ([2(k2+1)]) in
O(kn%(n +m)) steps. Together with the first k + 1 easy clauses I}, ..., T}, ;, these form a formula
F over 2k(k + 1) = O(k?) variables. We claim that F is unsatisfiable, therefore there is a resolution
refutation of F of length 20(7‘2), proving the lemma.

To prove that F is unsatisfiable we reason by contradiction and assume there is an assignment
that satisfies F. In order to satisfy all I7,..., T}, clauses at least k + 1 variables must be set to O,
hence by the pigeonhole principle there is at least one block j with two variables set to 1. But this

falsifies a clause of the form y;, V y; /, contradicting that an assignment exists. O

We end the section proving the hard part of Theorem 1.1, namely that CDCL requires exponential
time to solve pitfall formulas.

Theorem 3.9. There exists € > 0 and a family of graphs G,, of constant degree such that CDCL with a
decision heuristic that rewards conflicts runs for T steps on input ®(G,, &, n, k) with Pr[T < 2°™] < 27",



To prove Theorem 3.9 we introduce the following solver states. In state (a) no conflict has
occurred, all assigned variables are set to 0, no pair of Y; variables is assigned, and for each set Z; and
P; at least three variables are unassigned. State (b) is like state (a), except that a pair of Y; variables
is assigned. In state (c) variables X; U Z; U{p; ; € P; | i > 1} plus one y;; variable have participated
in a conflict; no variable with an index j’ # j has participated in a conflict; all assigned variables with
index j are set to 0; no pair of Y}, variables is assigned; and for each set Z;, and P; at least three
variables are unassigned.

The solver starts in state (a) and, since ¢ is unsatisfiable, ends after reaching a conflict that
cannot be resolved. We prove that with high probability the solver moves from state (a) to (b) to (c)
and ends at state (c).

Lemma 3.10. When the solver moves away from state (a), it moves to state (b) with probability
1 —exp(—(n)).

Lemma 3.11. The solver moves from state (b) to state (c).
Lemma 3.12. The solver never leaves state (c).
This is enough to prove Theorem 3.9.

Proof of Theorem 3.9. Consider the resolution proof 7 induced by a solver run that moves from state
(a) to (b) to (c). We hit 7t with a restriction p that sets variables in the following way: X variables
remain unset, Y and P variables are assigned to 1, and Z and A variables are assigned to 0. Observe
that p falsifies @, so for all we know it could be that 7|, is trivial, but in fact the only clauses that p
falsifies are I clauses, and (@ \ ), = II(G, x ). Therefore if we show that 7 never uses I' clauses
as axioms then we will have that [, is a refutation of LI(G, y ), hence by Theorem 2.1 it has length
exp(£2(m)), and by Lemma 2.2 it takes T = exp(£2(m)) conflicts to produce.

To prove that 7 never uses I' clauses, by Lemma 2.2 it is enough to to show that I' clauses never
unit-propagate or conflict, which is true since each easy clause contains two variables from each set
Y;, and for all but one of the sets Y; there is only one variable ever assigned, so at least k — 1 variables
of each T clause remain unassigned at all times. O

We finish the proof of the lower bound by proving the main technical lemmas.

Proof of Lemma 3.10. We begin analysing which clauses might unit propagate. At an (a) state padded
Tseitin clauses do not propagate because at least two of the Z variables are unset. The clauses of a
pitfall gadget can propagate only if both trap variables are set; otherwise variable p; ; is set to 0 and
satisfies the clause. Pipe clauses do not propagate because at least two of the P variables are unset.
Tail gadgets do not propagate because literals y and z are either unset or satisfied, and easy clauses
do not propagate because each clause has at least half of its variables unset.

Assume that we are at a stable (a) state and the next action is to decide a variable. If it is an X or
A variable, then no propagation happens and the next state is a stable (a) state. If a Y variable y; , is
decided and another Y; variable is already assigned, then the next state is a (b) state; otherwise no
propagation happens and the next state is a stable (a) state. If a P or Z variable is decided then no
propagation happens as long as the variable was not the m + n —2-th P; or (n — 2)-th Z; variable to
be assigned.

Therefore it is enough to prove that with high probability we decide a pair of Y; variables before
any set of n—m—2 P; or n—2 Z; variables are decided. In fact we prove that with high probability
we decide k + 1 Y variables before any n — 2 variables in P U Z are decided, which implies the first
event.

Let E be the latter event. Then Pr{E] = Pr[H > k + 1], where H is the random variable measuring
the number of Y variables decided among the first n + k — 1 decided Y U Z variables, that is a



hypergeometric random variable with a population of N = k(3n+m), a success population of K = kn,
and a number of draws of n’ =n + k—1.

Using the tail bound Pr{H < (K/N — t)n’] < exp(—2t2n’) for the hypergeometric distribu-
tion [Chv79] we obtain

n_ k
3n+m n+k-—1

2
Pr[H < k] < exp (—2 . ( ) -(n+ k)) exp(—Q(n)) . (4)

O

Proof of Lemma 3.11. Let y;,, y;j be the only pair of assigned Y variables and ¥* = W¥(y; ;, yj ) =
Cy,.vr,Copany TIE = I(yj¢)=D1,..., Dy, and ' = N(y;¢)=Dy,...,D; . be the corresponding
pitfall and pipe gadgets.

The analysis of which clauses unit propagate is analogous to that in Lemma 3.10 for (a) states,
except that now the ¥*, I1¢, and nt gadgets may propagate: for each assigned variable p;; the
clause C; is satisfied, for each assigned variable x;; clauses D; and D; are satisfied, and for each
assigned variable z; ; clauses D,,,; and D; . are satisfied, but the remaining clauses of these gadgets
can propagate.

Let h be the smallest number such that z;; = 0 for all h <i < n and note that 2 <h < n. Let h’ be
the smallest number such that z; ; = 0 for all h’ <i<n,i#h. Let o be the sequence of assignments
at state (b), and let 7 be the trail (x;; =0,...,x;,, = 0,2, =0,...,2; , = 0) interleaved with a
permutation of the trail (p;; =0,...,p; m4n = 0). We show by induction that up to the first conflict
the trail is of the form (o, 7’), where 7’ is a prefix of T\ o.

The induction hypothesis is true at state (b) with 7 = @, at which point all ¥* clauses Cy,...Cpin
that are not satisfied propagate immediately and in an arbitrary order, hence we can assume that
all p;; variables are set to O from now on. The remaining clauses propagate in increasing order:
assuming x; ; is unset, the first clause to propagate is either D; or D7, which sets x 71 = 0. Only after
this D, or D; can propagate X; , = 0, and so on. Eventually we reach a state where z; 1,...,2; p_1
are all assigned to 0, at which point the solver unit propagates z;;, = 0 and, since 2; y/41, .- -,%j -1
are also assigned to 0, we claim that the solver reaches a conflict with variable z; .

More specifically we have that those clauses of L]; that are not satisfied propagate z;, = 1—and
since 11 is unsatisfiable at least one such clause exists—, and either D,,,,; or D/, +, Propagates z; = 0.

Assume without loss of generality it is D,,,;. Note that even though clauses D, y11,--->Dmin
and DT’n et Dr’n +n, contain the literal 2, they are all satisfied. Hence, the first input resolution

step during conflict analysis is to resolve D,,,;, with some clause E € 1];. Note that D,,,; contains
X;jU{p;; €P;j|i>1}aswell as y;,, and E contains Z;, therefore all of these variables participated
in the first conflict. O

Proof of Lemma 3.12. At a state of type (c), the set of variables that have been involved in a conflict is
bounded below by the set S_ comprising X; UZ; U{p;; € P; | i > 1} and a variable y € Y;. The set of
variables that have been ever assigned is bounded above by the set S, comprising all of X, P;, Z;, and
A, one variable from each set Y, and all but three variables from each set Z; and Pj' . We need to
prove that we never reach a conflict where Y}, variables participate, and in fact we prove that we
never propagate any variable from a j’ block.

We claim it is enough to prove that (i) setting all of the variables in S_ always produces a conflict
and that (ii) setting all of the variables in S, does not propagate any variable with index j’. Indeed,
since the decision heuristic rewards conflicts, all of the variables in S_ must be assigned before a
variable not in S, is decided, and by item (ii) no such variable is propagated either. But by item (i),
once all of the variables in S_ are assigned we reach a conflict. After resolving the conflict either part
of S_ is unassigned, or we reach another conflict, or the formula is found unsatisfiable and the solver
terminates.
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To prove claim (i) we assume that all variables in S_ are assigned and consider the set of Z ;
variables. If all variables are set to 0, then we have that LI; [ijo is an unsatisfiable formula over X
variables, all of which are assigned, hence at least one clause of LI, is falsified. Thus we can assume
that some variable z € Z; is set to 1. If y =1 then we reach a conflict with one of the clauses of the
tail gadget A(y,2), possibly after propagating a; = 1 and a, = 1, hence we can assume that y = 0.
If any P; variable is set to 1 then a variable v’ gets propagated to 1 by the pitfall gadget ¥(y, y’) and
we reach a conflict with the gadget A(y’,z). Therefore we can assume that all P; variables are set to
0, except possibly for p; ;, which may be unassigned. Let C be the first clause in I1(y) that is not
satisfied, which exists because z = 1. If p; ; = 0 then C is falsified, otherwise C propagates p; ; =1
and we argue as with other P variables.

To prove claim (ii) observe that only easy clauses share variables across blocks, hence setting all
the variables in the j-th block does not affect a gadget with variables in the j’-th block. Easy clauses
do not unit propagate since at most one variable out of each Y}, set of variables is assigned, at least
k —1 variables in each easy clause remain unassigned. As for gadgets with variables in the j’-th block,
since all j’ variables that are assigned are set to 0 by the phase saving heuristic, the same analysis of
Lemma 3.10 for (a) states applies. O

4 Experimental Evaluation

We ran experiments on pitfall formulas using the CaDiCaL 1.0.3 [Biel7], Glucose 4.1 [AS09], and
MapleCOMSPS [LOG"16] solvers, representing the VMTF, VSIDS, and CHB and LRB heuristics
respectively. We also employed an instrumented version of Glucose that allows choosing a static
variable order [EGG*18].

In order to work with smaller instances we slightly modify the formula description to allow
different numbers of Y and Z variables. As the base graph for the Tseitin gadget we use a random
regular graph of degree 4 and either 45 or 50 vertices. The graphs are chosen so that the Tseitin
formula of the smaller graph is solved in a few hundred seconds, while the Tseitin formula of the
larger graph cannot be solved in less than one hour. We set the block size of Y and Z variables to 30
and 5 respectively, which we experimentally found to be large enough to make the formulas hard,
and we use two amounts of blocks, 6 and 8.

We ran the solvers with their default parameters, except that we disabled pre- and inprocessing
since these turn out to be counterproductive, we turned on VMTF and the unsat option in CaDiCalL,
and we disabled the adaptive strategies of Glucose to obtain more consistent results. We chose the
pure versions of MapleCOMSPS to avoid interference from other heuristics. The static order decides
onY,X, Z, P, and A variables in this order.

To account for different ways to initialize the variable order we shuffled the variables and clauses
(but not the polarities) with 32 different seeds and report the aggregated result, assigning a time of
3600s to unsolved instances. We do not do any shuffling when running with a fixed order.

We can observe in Table 1 that, as predicted, solvers do not do better than if they had to solve a
standalone Tseitin formula, while a fixed variable order is faster by several orders of magnitude.

We also tested the effect of mixing VSIDS with random decisions by running Glucose with a
probability of choosing a random variable ranging from O to 1. We find that interleaving a moderate
amount of random decisions, say with probability 0.2, is helpful, but as a side effect the runtime
variance increases. Random decisions decrease the average runtime and for instance the hardest
formulas ®(50, 6) and ®(50, 8) become (barely) solvable.
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Table 1: Mean CPU time to solve (s)

Formula CaDiCal. Glucose Maple CHB Maple LRB Static

11(45) 3331 754 621 424 3600
®(45,6) 2228 1917 600 2508 <1
$(45,8) 1963 2273 607 2650 <1
11(50) 3600 3600 3600 3600 3600
3(50, 6) 3600 3600 3600 3600 <1
3(50, 8) 3600 3600 3600 3600 <1

5 Concluding Remarks

We proved that CDCL with conflict-rewarding heuristics does not polynomially simulate resolution.
This does not mean we should throw away these heuristics, but it does imply that there is room for
improvement. Since random choices help, perhaps one could go a step further and actively choose
variables that have been long unused.

Speaking of randomness, it would be interesting to determine whether our formula has short
proofs using a random decision heuristic. Note that this does not follow immediately from the result
of Atserias et al. [AFT11] since the formula contains long clauses.

One annoyance of our result is that in some cases we need to assume a stable data structure. It
might be possible to improve our construction and/or analysis to ensure that the scores of all variables
in the hard part of the formula are periodically refreshed, which would allow us to get rid of the
stability assumption.

It would also be interesting to find smaller formulas that exhibit the same properties, so that size
does not become a factor that can influence experiments.
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